
A LEARNING INTERFACE AGENT
FOR SCHEDULING MEETINGS

Robyn l<ozierok

MIT Media-Lab

20 Ames Street Rm. 484c

Cambridge, MA 02139

robyn@ai.mit.edu

(617) 253-2137

ABSTRACT

This paper describes a Learning Interface Agent for

a meeting scheduling application. The agent employs

Machine Learning techniques to customize itself to the
user’s personal scheduling rules and preferences by ob-

serving the user’s actions and receiving direct user-

feedback. Our approach provides the user with sophis-

ticated control over the gradual delegation of schedul-

ing tasks to the agent, as a trust relationship is built.

We report upon an experiment in which a collection of

such assistants became gradually more helpful to their

users through the use of memory-based and reinforce-

ment learning. The experimental data reported upon

demonstrate that the learning approach to building in-

telligent interface agents is a very promising one which

has several advantages over more standard approaches.

KEYWORDS: Interface Agents; Learning Interface

Agents; Machine Learning; Personal Assistants; Soft-

ware Agents

INTRODUCTION

An interface agent is a semi-intelligent, semi-

autonomous system which assists a user in dealing

with one or more computer applications. Interface

agents typically behave as personal assistants: they

have knowledge about the tasks, habits and preferences

of their users and use this knowledge to perform actions

on their behalf [4, 5, 7]. Recently, several computer

manufacturers have adopted this idea to illustrate their

vision of the interface of the future (cf. videos produced

in 1990-1991 by Apple, Hewlett Packard, Digital and

the Japanese FRIEND21 project). These videos, which

portray interface agents “as they might be” have made

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for
d!rect commercial advantage, the ACM copyright notice and the

title of the publication and ite date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

@1992 ACM 0.89791.557-7/92/0012/0081 . ..$1.50

Pattie A!laes

MIT Media-Lab

20 Ames Street Rm. 489

Cambridge, MA 02139

pattie@media.mit. edu

(617) 253-7442

this metaphor for Human-Computer Interaction a hot

topic of discussion; however, current AI techniques leave

us well short of the goal of actually implementing the so-

phisticated agent behavior envisioned by these vendors.

One important problem is that of knowledge acguisi-

tton: How does the agent acquire the knowledge about

the user which it needs to provide effective personalized

assistance? Maes and Kozierok [7] argue that neither

of the currently popular approaches, the Knowledge-

Engineer-programs-the-agent and the User-programs-

the-agent approaches, is a satisfactory solution to this

problem.

Maes and Kozierok [7] propose a third approach which

relies on the use of Machine Learning techniques: the

agent learns the knowledge it needa to effectively as-

sist the user by observing and imitating that same user

(learning by obser-tratton). The agent’s learning maybe

accelerated by receiving direct feedback from the user

(reinforcement learning) and by being given specific in-

structions by the user (learning by being told).

Advantages of this approach are that it requires less

work from the end-user and application developer. Fur-

ther, the agent is more adaptive over time and the agent

can be customized to individual user preferences and

habits. Another particular advantage of the learning

approach is that the user and agent can gradually build

up a trust relationship. The agent develops its abilities

gradually, which allows the user to also gradually build

up a model of how the agent makes decisions. The user

can decide in how far to delegate tasks, and can even

decide not to delegate any tasks at all until he or she

becomes sufficiently confident in the agent’s predictions.

In the remainder of this paper we present a semi-

intelligent agent for meeting scheduling implemented
using simple but very powerful learning teehniquea:

Memory-Based Learning [10] and Reinforcement Learn-

ing. This concrete example demonstrates that Learn-

ing Interface Agents have several advantages over other

approaches to building interface agents. The initial re-

sults from an experiment using this system show that

Intelligent User Interfaces ’93 81

the approach is a realistic one, and that such an agent

can acquire sufficient knowledge to begin being useful

to its user within a short period of time.

OVERVIEW OF THE SYSTEM

The system under construction is composed of a calen-

dar and scheduling component coupled with a learning

agent. Each person in the organization has a personal

copy of the system so that the agent portion can become

customized to that individual’s preferences and habits.

The user’s actions within the calendar/scheduling com-

ponent provide the inputs to the agent, which learns by

observing this behavior. The agent is also able to in-

teract with the calendar/scheduling component on the

user’s behalf, but does so only if the user wishes it to.

The agent-user relation is modeled after the concept

of a personal secretary the agent has some initial gen-

eral knowledge about scheduling meetings; however, ini-

tially most of the scheduling is done by the user. Gradu-

ally the agent gets to know the habits and preferences of

its user (by observing the actions of the user, by mak-

ing suggestions for scheduling decisions and receiving

positive or negative feedback) and over time its sugges-

tions become better (more often equal to what the user

decides to do in some situation) and therefore more re-

liable, The user thus comes to trust the agent more and

can decide to delegate more and more meeting schedul-

ing decisions.

The calendar/scheduling component consists of a

graphical calendar and menu-bas&d interface, as shown
in Figure 1. The user or agent may initiate a new meet-

ing, or change or cancel a meeting he/she/it had previ-

ously initiated. It is also possible to request a change in

or cancellation of a meeting which had been scheduled

by someone else. When initiating a meeting, a time and

date may be selected directly, or a range of times and/or

datea may be presented to the set of agents involved,

who will then negotiate to come up with an optimal

time within the given range. At initiation, a meeting

may also have a frequency specified, i.e. once, weekly,

monthly, etc. In response to a meeting invitation, the

user (or agent) may chome to accept, decline, request

a change in the time and/or date selected, or agree to
attend part of the meeting (if, for example, there was

an overlap between it and a previously scheduled meet-

ing). In response to a request for a change in a meeting

time, the choices are to refuse the request, to select a

new time by hand, or to allow the agents involved to

negotiate to suggest a new time. Similarly, a request to

change or cancel a meeting may be honored or refused

by the original initiator. (The user may also schedule

outside meetings or personal appointments, but this, of

course, is not something the agent could do on his or

her behalf.)

Schedule a Meellng)[Wd Outside Rppohlment henge Or C9ncel Meellng

(o.3y1 r
SUN I MON TIM s WIONES IlsunsI iRl I

Snl)

Dale ~JIJiV 12~JULV 13 IWILV 14~JULV lS~JUIV !61JULV 171 JUL@

1+- –~
woo

I 0:00 w- 6.- & 95*

4.0 t“

1 I .00

!2=.)1 .
EiEtH’d=l=i==:-

.EEEl+H=
L!.v!?Jl I I r

Figure 1: The calendar interface.

Communication among the different users or agents

happens through the automatic generation of semi-

structured electronic mail messages. For example, the

command to initiate a meeting will result in the sending

of a meeting invitation message to the calendar mail-

boxes of the invited users. The incoming structured

messages are buffered and can either be handled by the

agent or by the user. The agent can take advantage

of its ability to communicate with other users’ agents

to enable it to suggest an optimal time and date for

a given meeting. Because the agent haa learned knowl-

edge of the user’s preferences, and the other agents have

learned knowledge of their users’ preferences, it is in an

ideal position to suggest a meeting time that will be

convenient for the user and also likely to be accepted

by the others being invited.

At first the user has to manually choose the action to

take in any given situation, but as time passes, the

agent’s observation of the user allows it to recognize

patterna in the user’s behavior and eventually learn to

predict the user’s actions. In each situation, (or, at the

user’s preference, in each situation in which the agent
hsa at least the user-provided threshold of confidence in

ita prediction) the agent tells the user what it thought

the user would do, how much confidence it had in its

prediction, and, if desired, why the particular action

seemed likely in the situation (based on similar situ~

tions in which the user had previously chosen that ac-
tion). A user who has come to trust the agent’s predic-

tions can hand over control to it. This can be complete,

or, more likely, partial, for example, allowing it to take

the action without checking whenever the meeting in

qu=tion is at least a certain amount of time away and

the agent’s confidence in the action is above a second

82 Intelligent User Interfaces ’93

threshold (which will likely be higher than the one at

which the user is interested in seeing the agent’s pr~

dictions). The agent can provide a report to the user of

the actions it hss recently taken autonomously.

At this time, we have implemented a system which al-
lows usera to keep track of their schedules, initiate meet-

ings with other users and respond to their invitations.

The system also includes an agent which observes the

user’s actions and predicts a response to each invita-

tion the user receives. Additionally, this agent can ini-

tiate negotiations with other agents to suggest an op

timal time for a meeting. The paper takea a sophisti-

cated calendar and scheduling system (with graphical

interface, etc.) such as lfeetingitfaker=~ for granted

and instead elaborates upon the learning agent aspects.

This implementation has been done in Lucid Common
LISP on a Unix workstation, as well as in Macintosh

Common LISP. The graphical interface to the calen-
dar/scheduling component has been partially imple-

mented on the Macintosh (see Figure 1).

HOW THE AGENT LEARNS

There are two things the agent does to enable it to

eventually learn to predict the user’s action in a partic-

ular situation. First, it keeps a memory of everything

the user does, stored as situation-action pairs, which

are simply raw data about what happened. Given a

new situation, it can then use memory-baaed learning

techniques to find the remembered situations which it

believes to be clceest to the new situation, and thus

predict the most likely course of action.

Second, it maintains a set of priority weighings for

meeting topic keywords, and for the relative impor-

tance of other participants. This information is used

to help interpret the meaning of the raw information in

the memory. For example, a person’s impression of the

initiator or other participants in a given meeting may

influence the decision whether to accept an inconve-

nient time or ask that it be changed. Initially, all these

priority weighings are set to a neutral value. They

may be changed manually by the user, and are also

adjusted automatically by reinforcement learning tech-

niques whenever the agent’s predicted action turns out

to be incorrect. The ratings of the other participants

are also used when the agents collaborate to suggest
a new meeting time. Figure 2 shows the structure of

the agent, and the flow of information between ita var-

ious components and the user in the learning stage of

operation.

Memory-Baaed Learning

The majority of the learning the agent does uses

memory-based iearning techniques based on [10]. The

bssic idea is to compare a new situation against each

of the situationa which have occurred before. Then the

m,

~

— PredictedAction

Situsiim-Acthn Pairs
Rasomim, ~ ~’

,-* /
/

/

/’

/ PrlOriq Weialltilw
,- /“’’”

● ‘ 4
>’Reinfff~mwit #

1! p -

I
‘a

‘\
\

\

I
\

\

I
I

I /

I

\ F&w Acllon
!_/’

New Siluation J

l;~ I

‘*’____ /-’)____--________—-

Figure 2: When a new situation ariaea, the mcmmy-bawd

rewning module takes it, along with the stored situation--icm

b -d Priority weighings and attempts to predict the user’s

action. Metmwhile, the user considem the situation, selects an

action, and performs it. (If the agent ia confident enough in iti

prediction to make a suggestion and the user decides to accept it,

this u treated in the same manner as the user deciding indepen-

dently to seleet that action.) The reinforcement learning module

then compares the predicted action to the user’s action, and, if

neceesary, updates the priority weighings. At the same time, the

situation is paired with the action the user took and added to the

memory of situation-action pairs.

agent looks at the actions taken in a small number,

m(m= 5 in this experiment), of the “cloaeat” situ-

ations to predict the action in the new situation. The

algorithm determines which features of the situation are

most relevant to predicting the action by analyzing all of

the data collected to date for correlations, as described

below.

One of the main benefits of this type of learning is

that all the information about situations and actions

is remembered, Another advantage is that it allows the

agent to give ‘explanationa” for its reasoning and ac-

tions in a language that the user is familiar with, namely

in terms of paat examples which are similar to the cur-

rent situation (“I thought you might want to take this

action because this meeting and your current calendar

are similar to a situation we have experienced before”).

Currently the set of features (fields) which comprise a

situation is hardcoded. It includes thirty-two details

about the meeting at hand, about any conflicting meet-

ings, and about the user’s schedule for the day and week

in question. In the FUTURE WORK section we discuss

alternativea to hardcoding these features. Actions are

Intelligent User Interfaces ’93 83

things like initiating a meeting, accepting an invitation,
rescheduling a meeting, etc.

The distance between a new situation and a memorized

situation is computed as a weighted sum of the di%

tances between the values in each field. The distance

between field-values is based on a metric computed by

observing how often in the memory the two valuea in

that field correspond to the same action. The weight

given to a particular field depends upon the value of

that field in the new situation being considered, and is

computed by observing how well that value in the field

has historically correlated with the action taken.

The agent predicts an action by computing a score for

each action which occurs in the closest m memorized

situations and selecting the one with the highest score.

The score is computed as:

‘I-L

where S is the set of memorized situations predicting

that action, and d, is the distance between the current

situation and the memorized situation s.

The weight and distance metrics theoretically need

to be recomputed whenever a new situation is added

to the memory; however, this is a relatively time-

consuming (O(n2)) procedure so we propose having the

agent do this computation only once per day, preferably
overnight. This has the effect that the agent cannot

learn from anything you do until the next day, which

seems a reasonable trade-off for the additional compu-

tation.

Once the above computation haa been done, the actual

prediction is only O(n), which is quite reasonable pro-

vided n is not allowed to get too large. This will be

ensured by keeping a bounded number of entries in the

memory. This is probably advisable in any case, since

entries which are too old may reflect user preferences

and habits which have since changed.

Along with each prediction it makes, the agent com-
putes a confidence in its prediction, as follows:

(-=)
dp,ed,c,.d~_n;ed!cted ntOtal

x—
m

n.~h=.

where:

● m is, as before, the number of situations considered

in making a prediction,

● dpredic~ed is the distance to the closest Situation

with the same action as the predicted one,

●

●

●

●

dOth., is the distance to the closest situation with
a different action from the predicted one,

npredicted k the number of the closest m situations
with distances less than a given maximum (in this

case 12.0) with the same action as the predicted

one,

nether is the minimum of 1 or the number of the

closest m situations with distances within the same

maximum with different actions than the predicted

one, and

ntotal = T3predicted + nether, i.e. the total number of
the closest m situations with distances below the

maximum.

If the result is <0, the confidence is truncated to be O.

/This occurs when dpredicted npredicted < dother /%the,

which is usually the result of several different actions

occurring in the top m situations. If every situation in

the memory has the same action attached to it, dOthe.

haa no value. In this case the first term of the confidence

formula is assigned a value of 1 (but it is still multiplied

by the second term, which in this case is very likely

to lower the confidence value as this will usually only

happen when the agent haa had very little experience).

This computation takes into account the relative dis-

tances of the best situations predicting the selected ac-

tion and another action, the proportion of the top m

situations which predict the selected action, and the

fraction of the top m situations which were closer to

the current situation than the given maximum.

Reinforcement Learning

After each user action, whether correctly predicted by

the agent or not, the new situation-action pair is added

to the memory, giving the agent a better chance to deal

correctly with similar situations in the future using the

memory-based techniques selected above.

When the prediction made by the agent is incorrect,

a reinforcement learning process is also used to help

ensure that a similar mistake is less likely to occur in
the future. The user is given an explanation of why the

agent made the decision it did, and an opportunity to

inform the agent if the decision was incorrect because

the agent had attributed either too much or not enough

importance to one of the features of the situation (e.g.

the initiator, participants or topic of the meeting being

considered).

This information is used to adjust the priority weighi-

ngs the agent keeps. The values for the relevant objects

are corrected by a small constant amount multiplied by

a positive or negative modifier determined by how much

more positive or negative the action taken was than the

84 Intelligent User Interfaces ’93

action predicted, Thus if the user accepts an invitation

the agent expected him/her to decline, and says that

the reason (or one of the contributing factors) was the

initiator’s importance, the initiator’s rating will be in-

creased, as in this case the more positive action taken

by the user causes the modifier to be positive. Simi-

larly, if the user declines an invitation the agent thought

he/she would accept, and claims an irrelevant topic as

an excuse, that topic’s priority rating will be decreased,

because this time the user’s action was more negative

than the one the agent expected.

When comparing the user’s action with the agent’s pre-

diction, things like canceling or rescheduling a meeting

which used to be scheduled at a conflicting time to en-

able attendance at a new meeting (perhaps a personal

audience with the president of the company) are con-

sidered very positive actions, while simply accepting an

invitation is considered a moderately positive action.

A moderately negative action would be to request that

the time of the new meeting be changed to better fit

the one’s schedule, and a very negative action would be

to decline the invitation outright.

SUGGESTING A MEETING TIME

A user wishing to initiate a meeting has the choice of

manually selecting the time, or providing a range of ac-
ceptable dates and times and asking the agent to sug-

gest one. If the agent is asked to suggest an appropriate

time for a meeting, it first sends out a message to the

other users’ agents requesting that they each send a list

of times their user is free during the range of dates in

question. It then intersects these and makes a list of all

time-slots (starting on 15-minute boundaries) in which

everyone is free (or if this is impossible, at least every-

one deemed by the meeting initiator to be mandatory

to the meeting).

It then sends another message to each agent, asking

it to send ratings for each of the possible time-slots

and for each of the other participants in the meeting.

An agent rates times by imagining that its user was

invited to a meeting like the one being scheduled at

the candidate time, and giving a score based on the

goodness or badness of the action predicted and the

strength of the prediction. Once all the candidate times

have been rated the agent normalizes the scores onto a

scale from O to 100. The initiating agent then uses the
following algorithm to find the most convenient of the

available times.

Given:

● candidate times tl, t2, t~,

● people pl, p2,Pn.

● preferences rij defined as person pi’s preference rat-

●

ing for time tj,and

priorities gii defined as person pi’s assessment of.-
the relative- importance of person pj. (Vi Qii =

O; other q values are relative to that in the range

[-100,+100].)

Then define the convenience of any given time tk to be:

n

()

n

tk = ~ rik ~qji

i=l j=l

In other words, the sum over all participants of each

person’s preference for that time, weighted by that per-

son’s overall importance, defined as the sum of the im-

portance measures assigned to him or her by the other
participants.

PERFORMANCE

The agent was tested on a set of simulated data in or-

der to allow testing several months’ worth of meeting

scheduling in a short period of time. The simulated

data was based on a hypothetical group of people which

included one professor, her director and six of her stu-

dents: three graduate students and three undergradu-

ates. Each person was aasigned a set of characteristics

which included their regular schedules (mainly classes

and regular outside meetings) and the types of times

they preferred to meet. Hypothetical group dynamics

were also devised which specified things like which peo-

ple would have reasons to meet with one another, and

approximately how often. Most of these were based on

actual people and situations, but a few were made up

since several of the people in the group had very similar

preferences which did not present as much diversity as

desired. A hypothetical series of meeting requests was

devised based on the supposed dynamics of the group

and then a response for each of the invited individuals

was chosen based on the characteristics which had been

assigned to that person. This series of meetings was

then presented to the agents along with the hypotheti-

cal responses. The agents’ predictions were recorded to

allow analysis of their performance.

Figure 3 contains graphs displaying the confidence each

agent had in each of its predictions, and whether in

fact that prediction was correct. The first five predic-
tions made by each agent were not plotted, as they were

essentially random. (Each person was invited to a dif-

ferent number of meetings, and thus had a different
number of predictions made.) It is clear that the fre-

quency of incorrect predictions is dr=tically reduced as

time goes on, and that the confidence in correct pre-

dictions begins to rise, while the confidence in incorrect

predictions is kept quite low. It is our intention to even-

tually provide graphs such as these to the users of these

Intelligent User Interfaces ’93 85

.

e

.

. w-

. .9-+

1
.

,2 .

.

AQM13

,.

,, I .
01

1 ..
04.

02.

.

.
,4 .

,1

I .
0,

,-

. .
)*. .

,,.

.

❑

,. .

0

,2
d

.

.

.

,,.

.
36.

1
0..

.

0 ,0 20

.

.

.
0,

.
.

..

I
,4 * .

O*

.

.

02
02

{

L__————
0 ,,2, 30.0

00

Figure 3: Confidence and Correctness of Predictions for each Agent.

86 Intelligent User Interfaces ’93

Agent 1

x
a

06- 0

ox
0 0 rlgn!

x x Ww!q

04.
0

.
T*U w Thruivw

02 . ,

x

s

Ooi >

0 10 20 30 40 50

trbla

Figure 4: Hypothetical threshold eettinge for Agent 1.

agents, in order to help them decide when to hand over

control to the agent, and what confidence-level cut-offs

would be most appropriate for having the user present

its suggestion and for allowing it to take the action au-

tonomously. For example, Agent 1‘s user might wish to

set thresholds as shown in Figure 4.

Agents 1 and 2 represented the users with the moat

complex and idiosyncratic behavioral patterns, while

agent 3 represented the simplest user pattern. Agent

7 represented a user with fairly complex and unusual

preferences, but with an aversion to scheduling regular

(i.e. weekly) meetings. This resulted in the agent hav-

ing the opportunity to deal with a large number of fairly

similar requests, allowing it to more easily identify the

important features and thus making accurate prediction

easier. Agents 4 through 6 represented users with well

defined, but fairly complex patterns of behavior. This

type of consistency allowed fairly steady improvement

on the part of their agents.

At two points in the experiment, once about 1/3 of the

way through and again about 2/3 of the way through,

the agents were asked to collaborate to suggest a time

and date within a one-week range for a meeting of the

entire group. In both cases they successfully came up

with at time which all users found acceptable. In the

first case, the time was truly convenient for all the par-
ticipants. In the second case, the time was leas con-

venient for two of the participants, but they were able

to accept it. We were able to confirm with a manual

check that in that case there were no times available

which would have been more convenient for all the par-

ticipants.

FUTURE WORK

Currently work is underway on a graphical user inter-

face to the scheduler software. once this is completed,

actual field tests will be performed. The data from these

tests will be used to drive future development.

Much of the future work on this project will focus on

improving the learning algorithms. First, we would like

to add support for learning by being told (or program-

ming by ezample. There is already a limited form of this

available in the commands which allow the user to edit
the priority weighings being maintained by the agent.

We also plan to allow the user to instruct the agent

by adding to the memory hypothetical situation/action

pairs, po+wibly including “don’t cares” in some of the

feature slots. Additional support for this type of learn-

ing would allow a user to also directly adjust the weight-

ing given to particular features of the stored situations.

Another form of learning by being told would be allow-

ing the user to tell the agent that particular parts of

his or her recent behavior are going to have less pre-

dictive value in the future. This will be necessary in

an environment like a university, where schedules and

thus particular time preferences change frequently, but

a person’s more general types of preferences are less

likely to change.

We would also like to eventually allow a user to specify

some particular features for the agent to consider. The

most open-ended way of doing this would be to allow

the user to write some LISP code, but perhaps a way of

specifying some of the more likely types of featurea can

be devised for users who do not wish to program their

agents directly in LISP.

Another option for improving the set of features ex-

amined, perhaps used in addition to user-programmed

featurea, is automatic feature generation. Some work

in this area has been done in [3]. This could be useful

in cases where the importance of a field depends not

only on the value in it, but also on the value of some

other field. For example, there are a number of fields
which contain information about conflict ing meetings,

which are only relevant when the number of conflicts

(another field) is at least one. Automatic feature gen-

eration could be used to create a new feature which is

an appropriate combination of the related fields.

We also intend to work on improving the way the val-

ues of the features are interpreted. The algorithm as

discussed in [10] expects there to be a relatively small
number of distinct possibilities for each field, whereas

in this application, several of the fields have numerical
valuea which can fall in a rather wide range (for ex-

ample the amount of time that week which is already

scheduled for meetings). Currently this is being dealt

with by breaking the range into subranges, so that there

Intelligent User Interfaces ’93 87

are a relatively small number of subranges a value can

fall into. This was done manually in this version of the

implementation, but should be something which can be

done automatically.

Finally, we would like to test whether a gradual decay
of older actions in the memory produces better results

than having a sharp cut-off (i.e. older examples being

deleted when the size of the memory exceeds a given

maximum).

RELATED WORK

Learning agents such as the one discussed in this paper

are related to the work on demonstrational interfaces

[1, 6, 8, 9]. The ways in which these differ from the

approach of a learning agent are discussed in [7].

The work presented in this paper is also related to a sim-

ilar project under way at CMU. Dent et. al. [2] describe

a personal learning apprentice which assists a user in

managing a meeting calendar. So far their experiments

have concentrated on the prediction of meeting param-

eters such as location, duration and day-of-week. Also

they report results that show that meeting scheduling

assistants which use machine learning techniques are

very promising and often out-perform hand-coded sys-

tems. Their apprentice uses two competing learning

methods: a decision tree learning method and a back-

propagation neural network. One difference between

their project and ours is that memory-based learning

potentially makes better predictions because there is no

“loss” of information: when suggesting a decision, the

detailed information about individual examples is used,

rather than general rules that have been abstracted

beforehand. On the other hand, the memory-based

technique requires more computation time to make a

particular suggestion (which we don’t consider to be a

problem because scheduling decisions do not have to be

made “right away”). An advantage of our approach is

that our scheduling agent haa an estimate of the quality

or accuracy of its suggestion. This estimate can be used

to decide whether the prediction is good enough to be

offered as a suggestion to the user or even to automate

the task at hand (by setting two different thresholds on

the agent’s confidence in its decision).

CONCLUSION

We presented an intelligent agent which learns to as-

sist an individual user in scheduling group meetings.

The data presented show that the agents’ guesses as to

which action to take in a particular scheduling situa-

tion gradually improve as they have had more time to

observe their user and receive user feedback. It can be
concluded that using Machine Learning techniques is a

promising way to build agents which become gradually

more helpful to their users and at the same time can be

trusted by their users.

ACKNOWLEDGMENTS

We would like to thank Thuy (Cecile) Pham for her
work on the graphical interface to the scheduling appli-

cation. We would also like to thank Robert Ramstadt

for his helpful comments on an earlier draft of this pa-
per.

The first author is an NSF fellow and has been partially

supported by both the MIT Media-Lab and the MIT AI

Lab. Additional resources for this research have been

provided by a grant from Apple Computer, Inc.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Cypher, A. EAGER: Programming Repetitive

Tasks by Example. In Proceedings of CHI, 1991

(New Orleans, Louisiana, April 28- May 2). ACM,

New York, 1991, pp. 33-39.

Dent L., Boticario J., McDermott J., Mitchell T.

and Zabowski D. A Personal Learning Apprentice.

Submitted to the 1992 National Conference on Ar-

tificial Intelligence. 1992.

Fawcett, T., and Utgoff, P. Automatic Fea-

ture Generation for Problem Solving Systems,

(COINS Technical Report 92-9). University of

Massachusetts, Department of Computer and In-

formation Science, Amherst, MA, 1992.

Kay A. Computer Software. Scientific American

251, 3 (March 1984).

Laurel B. Interface Agents: Metaphors with Char-

acter. In: B. Laurel (cd), The Art of Human-

Computer Interface Design. Addison-Wesley, 1990.

Lieberman, H. Capturing Graphical Expertise In-

teractively by Example. To be published in Pro-

ceedings of the International Center for Scientific

and Technical Information (Moscow) Workshop

on Human-Computer Interaction (St. Petersburg,

Russia, August 1992).

Maes, P. and Kozierok, R. Learning Interface

Agents. Submitted to INTERCHI’93 (Amsterdam,

The Netherlands, April 25-29) ACM, 1993.

Myers, B. and Buxton, W. Creating Highly Inter-

active and Graphical User Interfaces by Demon-

stration. In Proceedings of SIGGRAPH 1986, Vol.

20, No. 4. (Dallas, TX, Aug. 18-22) ACM, 1986.

Myers, B. Creating User Interfaces by Demonstra-

tions. Academic Press, 1988.

Stanfill C. and Waltz D. Toward Memory-Based

Reasoning. Communications of the ACM 29, 12
(Dec. 1986), 1213-1228.

88 Intelligent User Interfaces ’93

