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ABSTRACT 

 
We propose i-Seek, an Intelligent System for Eliciting and Explaining Knowledge that 
leverages the OpenMind [1] Commonsense knowledgebase in conjunction with domain-
specific knowledge in Personal Finance, Technical Help, and Health domains to act as an 
advisory system for novice users. Most of the interfaces are plagued by recurrent key 
problems: 1) elicitation – how to ask questions that enable the expert model to make 
decisions, and at the same time, are understandable to the novice, and 2) explanation – 
how to explain rationale behind expert decisions in terms that the user can understand. i-
Seek maps the user’s goals and expectations to the corresponding expert model’s attributes 
as expressed in domain-specific terms. For example, instead of asking “What is your risk 
tolerance?”, where the user might not comprehend the notion of risk tolerance, i-Seek tries 
to elicit the same information by asking a non-direct question such as “Do you usually buy 
lots of lottery tickets?”.  i-Seek constructs the novice user model by taking into account the 
user’s personal information, interactions history, and the current context.  
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1 Introduction 
 

1.1 Problem 
 

Computer systems with common sense have been a persistent dream of A.I. for more than 

50 years. Early research showed that some factual knowledge about the real world could 

improve the system’s performance and accuracy significantly [2]. However, most of the 

prevalent expert systems and interfaces lack this kind of knowledge and hence, are very 

difficult to use by the novice users. 

 

Figure 1: Dilbert’s joke about experts 

 

The same is true about most of the existing expert advisory systems as is mocked by 

Dilbert in the above cartoon (Figure 1). These systems employ inflexible interfaces like 

menus, drop-downs, buttons etc. (see Figure 2 and 3 on the next page) providing only a 

handful of options that are sometimes not immediately clear or intuitive and may 

potentially collect superfluous information. For instance, instead of asking the user how 

risk tolerant (s)he is by offering some discrete and incomprehensible levels of risk (Figure 

2), it will be enormously beneficial to provide some explanation about the ramifications of 

being aggressive or taking high risks [3]. Common Sense facts such as "frequent gambling 
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means high risk" and "having recurring credit card debts means high risk" capture human 

tendencies of risk taking attitudes. 

 

 

Figure 2: Vanguard’s Risk Tolerance Question 

 

Figure 3: A Sample Technical Help Page 
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Even more importantly, these interfaces have unwieldy and unnatural ways of estimating 

diagnostic objectives for the domains. For example, in the following WhatHaveIGot 

Headache survey questionnaire (Figure 4), the objectives are divided into enumerated 

categories like acute vs. chronic, which certainly make the interface development easy but 

at the expense of usability of these interfaces. The interface presents the user with a large 

number of choices to quickly cut down the search space, but that leaves the user tediously 

perusing large numbers of irrelevant choices.  

 

 

 

 

Figure 4: WhatHaveIGot Headache Survey 
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The proposed i-Seek system strives to overcome these limitations by adopting a 

commonsense-enabled analogical reasoning approach [4,5,6] for mapping novice and 

expert knowledge, without compromising on the value of expert domain model. The 

systems uses common sense reasoning to facilitate seamless interactions between the user 

and the system by providing intuitive ways of bridging the knowledge gap [7]. We 

illustrate the generality of the i-Seek architecture in the domains of Personal Finance and 

Technical Help. Figure 5 on the next page shows some sample OpenMind knowledge for 

the utterance, “invest money”. i-Seek uses knowledge pieces like those to construct 

adequate elicitation and explanation models as described in subsequent sections. The i-

Seek design enables it to be extensible, scalable, and modular.  

 

1.2 Background 
 

In 2000, the Commonsense Computing and the Software Agents groups at the M.I.T Media 

Lab launched the Open Mind Common Sense (OMCS) initiative. The primary motivation 

behind the project was to aggregate common sense knowledge in form of English 

sentences from the WWW users [8].  The project is a great success and thus developed 

OMCS corpus now contains over 700,000 facts about everyday human life.  

 

Since then, the OpenMind project has led to several interesting projects. Some of them 

use the corpus to develop innovative interactive applications, while others use the 

knowledge base to enable various types of reasoning frameworks [7,9,10,11,12]. One of 

the interesting experiments out of these projects was to evaluate the domain-specific 

coverage of OpenMind and in what ways can this knowledge be used to build 

collaborative interactive systems that use or are at least behaviorally similar to some sort 

of expert system. 
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Figure 5: Open Mind Sample Knowledge 

 

We felt that there was a great need for an i-Seek like system architecture in many 

industrial applications. Increasingly, as most of the Internet services are being 

commoditized, the key differentiation for the companies is providing better customer 

service and support. Specifically, AOL has built its business around enabling its solutions 

and customer service to hand hold end-users and solve their problems concerning Internet 

connectivity and computers in general. AOL extensively pursues research to further 

enhance their capability in providing help and assistance to people who are novice users. 
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In the similar vein, AOL has generously provided support for our research and has been 

actively involved in design and testing of the system. Tom Jarmolowski and the Help team 

at AOL have worked directly with us in providing useful insights, data, and technical help. 

The designing and implementation of the system has been an iterative process and we 

have always benefited hugely from AOL’s feedback and critiques about user scenarios, 

domain-knowledge coverage, and efficacy of the system. In the process, we asked AOL to 

provide some examples of scenarios where a user’s problem can be solved by providing 

an analogy from commonsense knowledge. In the following are two sample knowledge 

pieces from the data provided by AOL: 

    

1) “Use the System Information Tool to delete the AOL adapter and restart the software 

!Explanation !The AOL adapter transmits information from the Internet to our service. When this 

adapter is broken, data can't get through so you will not be able to get to Websites. When the 

software opens, it checks to make sure necessary files are installed. If the AOL adapter is missing, 

it will install a new adapter. !!NOTE: The WAN Miniport adapter replaces the AOL adapter for 

newer versions of the software. 

Analogy !Think of the AOL adapter as a bridge and Members as passengers on a train. If the bridge 

is broken, the people can't get to their destination. Once the bridge is repaired, the train can 

resume its journey and reach its destination.” 

 

2) “Check if cipher strength is '0' !Upgrade Browser to 128 bit Encryption 

!Explanation !Cipher strength or encryption refers to the built -in security features of your browser. 
Generally, Websites require 128-bit encryption in order to process information securely. If the 
cipher strength of your browser is inadequate, you will not get into secure Websites. Upgrading 
your browser's encryption may help it better handle secure Websites. 

NOTE: You only need to do this when unable to get to secure Websites. 

Analogy !If you don't have the proper security clearance, you may be able to get into the building, 
but not into certain areas. You must upgrade your security clearance status to go further. So 
without the proper encryption, your browser may be able to access a website, but not log in.” 

 



 

 

17 of 100 

Based on these encouraging results, we developed applications based on the i-Seek 

architecture to help automate the process of selecting analogies in order to improve the 

effectiveness of help advice. 

 

 

1.3 Organization 
 

This thesis discusses all work done to date on the i-Seek project and lays foundation for 

future work in order to extend the framework in other domains. Section 2 discusses some 

user scenarios and builds the case for commonsense reasoning. In Section 3, I describe the 

functional architecture of the i-Seek system. Section 4 describes the commonsense-

enabled analogical mapping, which helps in building elicitation and explanation models 

for domain-specific applications. Section 5 describes some of implementation, while 

Section 6 discusses the user evaluations. Also, I provide an account of contemporary 

research in this area in Section 7. Finally, we discuss the outcomes of this project in 

Section 8. 
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2 User Scenarios 

 
In the following sub-sections we provide illustrations of domain-specific interactions 

between the user and i-Seek in two application domains of Online HelpDesk, and 

Personal Finance. i-Seek leverages Commonsense Reasoning to map expert finance and 

help-related information to general personal life situation and vice versa.  

 

2.1 Online HelpDesk Scenario 
 

John is an AOL user and he has been using its service for past 2 months. He uses it to surf 

Internet, look at his friend’s pictures online, and send emails. Recently, he is discovering 

that his Internet Explorer is getting slower and slower day-by-day. He wants to know what 

is causing this and how to remedy it.  

 

Help Topic: “Browser is running slow” 

He invokes the AOL Commonsense SuggestDesk interface to Suzy, the human chat 

assistant sitting behind the interface (Figure 6). SuggestDesk doesn’t directly interact with 

the user, but instead provides relevant suggestions in form of analogies, diagnostic 

information about the user problem, and explanations so that Suzy can use them to 

provide well-informed advice to the user. The goal is not to replace the human assistant, 

but to make the help process as helpful as possible. 

 

Figure 6: Mock-up of HelpDesk Assistant 
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John can use the interface to ask questions about his problem. He types: 

“My Internet Explorer is running slow” 

[Queries can be in form of keywords or simple English sentences.] 

The HelpAssistant builds a simple parse of the query and processes as follows through 

CommonsenseAnalyzer: 

a) It searches OpenMind for knowledge relevant for browsers such as following: 

Internet Explorer is a web browser 

surfing the web requires a web browser  

if you want to surf the web then you should connect the computer to the internet 

and use your browser 

Your web browser accesses the Internet so that you can view webpages 

a web browser is for viewing web pages. 

my browser can view images. 

webpages contain text and images 

b) From the knowledge acquired from OpenMind, the analyzer builds a frame-based 

representation of the user’s parsed query with slots as relations from ConceptNet: 

[Internet Explorer] - > used for surfing the web 

[Internet Explorer] -> connects to internet 

[Internet Explorer] -> can be used to view [webpages] - which contain text and 

images 

c) It also queries the expert help model to fetch domain-specific knowledge about 

browsers and in which situations they would run slow: 
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Browsers download pictures and files to computer. 

It helps in faster reload of the webpages.  

These files are known as browser cache or Temporary Internet Files. 

After sometime, the cache size may build up and cause the browser to slow down if 

it is not cleaned.  

 

Browsers can be vulnerable to viruses. some free applications can have viruses. 

Viruses use browser’s resources. This may cause the browser to run slowly. 

 

Deductions: 

[Internet Explorer] -> can have large cache after months of use 

[Internet Explorer] -> can run slowly if the cache is large 

[Internet Explorer] -> can run slowly if infect by virus 

 

Elicitation Step:  

The system provides the human help assistant with analogies and possible diagnoses with 

respect to problem at hand and analogical concepts. As the assistant now knows that there 

exist multiple potential causes for the problem, she tries to elicit more information from 

the user (see Figure 8 for sample elicitations): 

Suzy: “What do you mostly use your AOL service for? Some services could be, 

downloading free software, looking for friends photos, or just surfing the Internet.” 

John: “I never download free software but yes, use it for emails and looking at my 

friend’s photos.” 
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Suzy can now infer that as security is not the issue, perhaps browser cache is the problem 

at hand. 

[Internet Explorer] - > used for surfing the web 

[Internet Explorer] -> connects to Internet 

[Internet Explorer] -> can be used to view [webpages] - which contain text and 

images 

[Internet Explorer] -> can have large cache after months of use 

[Internet Explorer] -> can run slowly if the cache is large 

She tries to confirm that in the next step. 

Elicitation-Support Step 

 Suzy: “How long you have been using the service?” 

 John: “about 2 months”  

 

[Internet Explorer] -> has large cache after months of use and if it is not cleaned. 

[Internet Explorer] -> run slowly if the cache is large 

Suzy deducts using the above information that the browser performance issue is most 

likely because of a large cache, which has not been cleaned. The system provides her 

similar situations in expert’s knowledge base and finds the following steps: 

a) Go to AOL menu and select Preferences tab. 

b) In the displayed window, select WWW 

c) You should see an “empty cache now” button. 

d) Click it! 

Explanations Step: 
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Finally, the system translates the expert knowledge into novice’s language and finds an 

analogical situation from Open Mind. 

Suzy: It looks like the browser cache on your computer is too large and is causing the 

Internet Explorer to run slowly. 

Reason: When you visit Websites, they download pictures and files to your computer in 

order to display properly. These files are known as browser cache or Temporary Internet 

Files. Eventually these files may become damaged and cause pages to load incorrectly, or 

they may just build up and need to be cleared out. 

 

Solution: So, you should clear the browser cache. It is like when your trashcan is full, and 

you can’t throw in more garbage. Clearing the browser cache is like emptying the trash. 

You have a folder full of files you no longer want or need. It's time to empty it. 

Here are the steps: 

 

a) As you will first locate the trashcan in the house, you should first locate the AOL 

tab in the interface and locate Preferences. 

 

b) As you will pick the filled trashcan, you should pick the icon that is of browser 

marked WWW. 

 

c) Finally, as you empty the trashcan, you should click the “empty cache now” 

button.  

 

d) Restart the browser and it should run faster now. 
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2.2 Personal Finance Scenario 
 
 
John has no prior investing experience and wants to start investing small amounts. He is 

seeking some advice about it. 

 

Dialogue: 

----------------- 

User: I have some money/ I am new to investing/ I want to start investing/ I do not have 

much money to invest  

 

System reasons about what to do with money with respect to the assumptions and 

constraints: 

 

CSReasoning: 

cause-of ("earn money", "invest") 

isa ("activity", "invest money") 

effect-of ("earn interest", "invest money") 

effect-of ("financial return", "invest money") 

cause-of("buy real estate", "invest money") 

effect-of("financial return", "sell real estate") 

following-event ("sell", "buy") 

 

Commonsense  Knowledge:  

money is earned through working or investing 

An activity someone can do is invest money. 

If you want to fight inflation then you should invest your money in high yield 

accounts 

dollars are a form of money, which can be invested to earn interest 
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Something that might happen while investing money is loss 

investing money  is for keeping away from boredom 

investing money is for showing support for a cause 

Something that might happen as a consequence of investing money is becoming 

attached to the outcome 

You would invest money because you want to save it 

The effect of opening a business is investing money in a business 

a worthwhile cause would make you want to invest money 

You would invest money  because you want return 

 

Expert Reasoning: 

 

if desired-effect("earn money", X) && isa ("activity", X) && X: parameters("new", "not much 

money", "beginner" etc) 

Then,  

John's profile set as beginner and associated defaults such as small investments, moderate 

risks, appropriate diversification etc. 

 

System: 

Should not wait while your cash flow improves.. There are ways for beginners to invest. 

 

Why? 

Explanation: If you invest early you can sell your investment later for high financial returns 

 

Analogy: If you buy real estate now, you can sell it after for high financial returns. 

 

Expert Reasoning: 

if invest-state("beginner", X) && X:parameters ("small investment", "moderate risk", "mutual 

funds" etc) 
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a) Direct Investing: method of buying stock directly from the company without going 

through a broker 

 

Expert Knowledge: 

Use direct investing if you want to save on broker fees 

With direct investing fees are lower than of broker fees 

you can invest small amounts (often as low as $25 or the value of one share of stock) 

 

Analogy: buy/rent house directly from the house owner 

 

Commonsense Knowledge:  

a real estate broker would charge you money 

if you rent house directly from house owner you will save broker fees 

to save money do not use real estate agents 

or  

b) enroll in programs to have fixed amount deducted from your bank A/C and 

automatically invested in stock 

 

Expert Knowledge: 

stock purchase can be done through bank account 

DPPs allow automatic investment 

 

Analogy:  

It is like setting up automatic electricity bill payment. 

Commonsense Knowledge:  

bills should be paid on time 

you can setup your bank account for automatic bill payments 

You can pay electricity bills automatically through your bank account 
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you can pay heating bills automatically through your bank account 

 

User: Great! I will start investing right away. 

 

Assistant: Please look at the following sites that provide DPP plans: 

www.dppinfo.com 

www.moreaboutdpp.com 

 

In this section, we described one Personal Finance and one Technical Help scenario, 

which illustrate the system’s reasoning process in mapping expert knowledge to the 

novice knowledge. In subsequent sections, we go more deeply into these scenarios and 

illustrate how the architecture implements commonsense reasoning to be able to perform 

these analogies. Also, in the Discussions and Future Directions section, we talk about a 

Personal Health scenario, which will further demonstrate the generality of our approach. 
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3 Architecture Description 
 

3.1 Commonsense Reasoning Components 
 

OMCS is a corpus with 700,000 facts about everyday human life. Using NLP (Natural 

Language Processing) techniques, the Commonsense Computing and Software Agents 

Groups have created a variety of toolkits to enable applications with common sense 

knowledge: 

 

(a) ConceptNet [15] is a semantic network extracted from OMCS. It has semantic relations 

like (CapableOf “person” “keep dog as pet”). With this kind of operation the system is able 

to infer the context given a situation. For example, the context of “car” is “wheel”, 

“travel”, “street”, “drive”, “container”, “bridge”, “drive”, “parking lot”, “automobile.” 

 

(b) LifeNet [16] is a dynamic bayesian network, which mimics an egocentric model of 

human daily life. It has links like (=> 0.858 “I enjoy music” “I watch musician perform”), 

where 0.858 is the probability that this link is true.   

 

(c) ExpertNet has been developed as part of this project to enable a commonsense 

inference tool for reasoning about expert knowledge situations. The expert knowledge has 

notion of “Situations”. Situations are cluster of propositions with some joint probability 

distribution. The semantic network models individual situations as graph nodes and 

predicative relations between any two situations as graph edges. Some of the reasoning 

capabilities of the net would be to do nearest neighbor search, exclusion of some 

propositions from a situation, and to infer likely situations given current situation etc [11, 

12]. For instance, given a Situation s =  {“I want to buy a house”, AND “I do not have 

much money”}, another Situation s1 = {“I want to buy a house”, AND “I look for houses in 

an inexpensive neighborhood”, AND “I contact real estate agent”, AND “I apply for 

mortgage”} would be likely inferred as the correlated neighboring situation. ExpertNet 
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helps i-Seek in modeling domain information in a semi-formal manner and is used to 

provide knowledge resource which can be reasoned about using Commonsense 

reasoning.  

 

 

 

 

 

 

 

Figure 7: i-Seek Functional Architecture 
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3.2 Domain Models 
 

i-Seek has 2 expert domains – 1) Personal Finance, and 2) Online Technical Help. 

Accordingly, i-Seek maintains a Personal Finance Advisory knowledge base, and an AOL-

specific online SuggestDesk knowledge base. OMCS may have sparse knowledge in the 

domain of interest, such as finance. Thought it might have general knowledge such as 

"investing in stocks is risky", it might not have all such relevant facts. Therefore, we 

anticipate the need for experts to augment the Common Sense knowledge with more 

specific facts, such as "high beta-ratio usually means riskier stock". Even this could be 

considered "Common sense" for the community of financial advisors.  This more specific 

knowledge can be handled in a manner similar to the more general Common Sense. 

 

3.3 Reasoning and Mapping Components 
 

i-Seek consists of three principal reasoning components: 

 

a) Commonsense Reasoner: The Commonsense Reasoner uses the above-described 

semantic networks for doing various types of fail-soft reasoning such as structure mapping, 

causal likelihood, temporal likelihood, nearest-neighbor situation etc. 

 

b) Planner: The planner coordinates between the front-end Interface, the Reasoner and the 

Mapping Engine to carry forward the interaction with the user in a seamless manner. The 

planner maintains the user history, interaction history and mimics the notion of context 

into derived situations [17]. This way the planner tries to construct a novice user model. 

For instance, if a Heartburn patient (assuming that i-Seek knows about the Heartburn 

condition) is interacting with i-Seek for some advice on weight control and he mentions 

that he just had tomato-rich food, the Planner can use this information to conjoin with his 

historical Heartburn condition and can warn about the pitfalls of having acidic food 

during Heartburn condition. 
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c) Structure Mapping Engine (SME): The Mapping engine does analogical mapping 

between expert domain models and the above-described novice models. For instance, 

from the following simple knowledge pieces, 

Novice:  Buying lottery tickets is risky 

    Expert:  Investing in stocks is risky, 

 

the SME associates “risk” attribute across “Buying lottery tickets” and “Investing in stocks” 

concepts. 

 

3.4 The Intelligent Interface 
 

The proposed i-Seek system is deployed as a web service and has a simple and intuitive 

web interface. Users can log into the system and go through series of interactions to get 

advice about some particular topic within the realms of Online HelpDesk and Personal 

Finance (Figure 8).  

 

One of the salient features of the interface is providing natural ways of elicitations and 

explanations. The interface exploits the mapped novice-expert knowledge to elicit 

knowledge from the user in an indirect and non-obvious way [18,19]. For example, in 

Figure 8, rather than asking about details of the user’s knowhow of computers, i-Seek 

abstracts the required knowledge onto some general life activity, in this particular case, 

traffic. Also, at any stage of interaction the user, if required, can ask the system to explain 

the rationale behind a particular choice of the system action, which mimics the expert 

domain model. In order to enable this, the interface provides an adjacent message button 

next to any feedback or query. For example, when the system tries to gauge the implicit 

user goal [7] expectation in Personal Finance domain and if the formulated question is 

unclear to the user, the user can click on the adjacent, “Why are you asking this?” button 
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and the system provides the following explanation (Figure 9) relating the goal information 

to the expected return on investments. 

 

 

 

 

 

Figure 8: An applet-based web interface for i-Seek Online HelpDesk System 

 

 

 

Figure 9: The Explanation Text Box 
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In the case of Personal Finance domain, some sample domain specific common sense 

facts used are as follows: 

1.  ‘high risk’ -> ‘high return’ 

2. ‘high return’ -> ‘invest in stocks’ 

3. (PropertyOf "diversified stock" "good growth with high consistency over long term") 

4. (PropertyOf "good stock" "larger the growth rate of dividends and earnings") 

5 (CapableOf "high stock allocation" "good return for small amount of capital") 

 

Understanding the history states of the interaction and the current goal, i-Seek does a 

sanity check over ensuing user action and reports back to the user if there are any goal-

defeating actions from the user. For example, if the user has specified his goal, [I want safe 

investment] and if he is trying to allocate all his finances to stocks, i-Seek alerts the user 

about potential consequences of such a strategy. In this case, it uses the following 

common sense knowledge piece: 

(CapableOf "high stock allocation" "risky investment"), 

and infers that the user goal state, [I want safe investment] conflicts with the potential 

result state, [risky investment]. 
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4 i-Seek Commonsense Paradigm 
 

 

When people make analogies, they perceive some aspects of the structures of two 

situations -- the essence of those situations in some sense -- as identical. Essentially, 

making an analogy requires highlighting various different aspects of a situation and the 

aspects that are highlighted are often not the most obvious features. Consider two 

analogies involving DNA  [20]-- the first is the analogy between DNA and a zipper. When 

we are presented with this analogy, the image of DNA that comes to mind is that of two 

strands of paired nucleotides (which can come apart like a zipper for the purposes of 

replication.) The second analogy involves comparing DNA to the source code of a 

computer program. What comes to mind now is the fact that information in the DNA gets 

compiler into enzymes, which correspond, to the machine code. 

 

As it is apparent from these cases, no single, rigid representation can capture what is going 

on in a particular analogy-making. In the contexts of different analogical mappings, very 

different facets of this large representation structure are selected out as being relevant, by 

the pressures of the particular context.  

 

Essentially, analogical process can be broken into 2 categories: 

a) situation-perception, which involves taking the data involved with a given 

situation and filtering and organizing them in various ways to provide an 

appropriate representation for a given context.. 

b) mapping, which involves taking the representations of two situations and 

finding appropriate correspondences between components of one 

representation with components of other representation to produce the match-

up. 
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This task becomes very difficult in case of interactive applications that act as experts as 

source and target knowledge are highly disparate and it is highly probable that there might 

not be any obvious shared structures between the two knowledge pieces. Hence, while 

designing mixed-initiative novice-expert systems, full formalization of all potential 

relevant knowledge may not be cost-effective or practical [21]. 

 

Also, mixed-initiative systems present many challenges in terms of user interface designs. 

It is highly desired to understand the task at hand, make suggestions in context, and 

present information in a manner, which is understandable to the user [22]. The more the 

system knows the more helpful it can be and hence (see Table 1), it might seem that the 

systems should be completely formalized. However, formalizing everything is challenging 

in its own right and without a guarantee of tractability. Ideally, mixed-initiative systems 

could formally represent and reason with subsets of the problem that can be formalized, 

while leaving other parts of the problem to the humans and their more thorough 

understanding of the task. 
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     Models 
 
Properties 

Expert Models User/Novice 

Models 

Commonsense 

Models 

Depth of 
Knowledge 

Deep and detailed 
knowledge about the 
domain specifics. 

Shallow knowledge 
about the specific 
domain. 

Shallow knowledge 
about the domain and 
everyday life. 

Breadth of 
Knowledge 

Narrow knowledge about 
the domain. 

Narrow knowledge 
about the domain. 

Narrow knowledge 
about the domain and 
broad knowledge 
about everyday life. 

Reasoning Mostly, unidirectional 
reasoning and inference 
mechanisms. 

Limited or ad-hoc 
reasoning. 

Fail-soft reasoning and 
analogy mapping. 

Usability Domain knowledge 
usable only to experts. 

Novice knowledge 
but only usable by 
experts. 

Analogies usable to 
both experts and 
novices. 

 
 
 

Table 1: Novice, Expert, and Commonsense frameworks 
 
 
 
 
 
 
 
 
Forming an analogy involves mapping elements from a particular situation onto elements 

in a separate situation in a way that preserves the relationships between the elements in 

each situation [4]. Representations that analogies are constructed between are semi-formal 

structures having predicate-argument structures. called csfragment. 
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(EffectOf 'download applications' 'browser infected by virus') 

(EffectOf 'download plugins' 'hacked by hackers') 

(EffectOf 'hacked by hackers' 'browser doesn't start') 

 

Analogy is always constructed between 2 csfragments: one called source while the other 

target. The source csfragment is a construct that is already present in the system while the 

target csfragment represents new input to the system. Constructing an analogy between 

two csfragments involves finding a set of mappings between their constituent arguments 

and associated relationships. 

 

Gentner and Markman [23] distinguish between feature-based alignment as similarity and 

relation-based alignment as analogy. We do not construe analogy in a strict sense as for 

mixed-initiative systems both feature-based and relation-based alignments are important. 

More over, our representation is flexible enough to accommodate both features and 

relations in a unified framework of semi-formal structures. 

 

In order to find suitable alignment mappings across csfragments, each argument from the 

source csfragment must be compared to each argument in the target csfragment. This 

comparison involves attempting to align the source arguments’ peer relationships with the 

target arguments’ peer relationships. A naïve approach to alignment would involve 

matching each of the relationships that the source argument features in with each of the 

relationships that the target argument features in. Consequently, the process of forming a 

complete alignment is prone to combinatorial explosions in terms of both arguments (due 

to exhaustive argument-to-argument comparisons) and inter-argument relationships (as a 

greater number of relationships will require a greater number of comparisons during the 

structure alignment.) 

 

We assume that is not necessary to make every possible comparison between the 

relationships present in the csfragments as networks of relationships contain some 
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redundancy e.g symmetric, transitive relations. Following, this our algorithm aligns pairs 

of arguments based on the relations common between pairs of arguments in each 

csfragment. Once aligned pairs of arguments have been added to the alignment they are 

not considered during the rest of the alignment process. This approach tames the 

complexity problem by ignoring potentially redundant relationships. The graph algorithm 

restructures the semantic graph by spreading activation and uses thresholding to prune the 

network of analogous nodes. This, our approach to analogy involves identifying the 

structural roles played by arguments in the source and target csfragments and then 

determining the similarity of these roles. If the roles are similar, the fragments are aligned 

by creating a mapping between them. 

 

Our approach to analogy allows any alignment between two pairs or related arguments to 

be ascribed a value representing the strength of alignment. This strength is calculated by 

the get_analogies function mentioned below: 

 

get_analogies(concept) 

-inputs a concept node 

-uses structure-mapping to generate a list of 

analogous concepts 

-each analogous concept shares some structural features 

with the input node 

-the strength of an analogy is determined by the number 

and weights of each feature. a weighting scheme is used 

to disproportionately weight different relation types 

and also weights a structural feature by the equation: 

log(f+0.5*i+4), where f= outgoing edges 

i = incoming edges 

- outputs a list of RESULTs rank-ordered by relevance 

- each RESULT is a triple of the form: 

             ('analogous concept', SHARED_STRUCTURES, SCORE) 

- SHARED_STRUCTURES is a list of triples, each of the form: 
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             ('RelationType', 'target node', SCORE2) 

- SCORE2 is a scalar valuation of the strength of a 

particular shared structure 

 

The SME also uses get_context function from ConceptNet to bring out contextually 

relevant concepts to the specified argument-predicate tuple.  

 

get_context(textnode_list, max_node_visits=500, max_results=200, 

flow_pinch=300, linktype_weights_dict=None, 

textnode_list_weighted_p=0) 

the max_node_visits determines how far context will spread 

increasing it adversely affects runtime 

max_results limits the number of results returned 

but changing it does not affect runtime 

flow_pinch limits the number of edges considered 

at each step of the context flow 

the linktype_weights_dict is a python dictionary 

whose keys are the conceptnet relationtypes and whose 

values are a weight assigned to each, in the range [0.0,1.0] 

- to blacklist a linktype, set its weight to 0.0 

- context flow along backedges are regulated by entries in the 

linktype_weights_dict whose key names are "relationtype"+"Inverse" 

- considering inverse flows slow the runtime of this function a bit 

- omitting a relationtype will default to it being blacklisted 

- for reference, the default_linktype_weights_dict is: 

    default_linktype_weights_dict = { 

  

        'ConceptuallyRelatedTo':0.1, 

        'IsA':0.9, 

        'FirstSubeventOf':1.0, 

        'DesirousEffectOf':1.0, 

        'ThematicKLine':0.8, 

        'MadeOf':0.7, 
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        'SubeventOf':0.9, 

        'UsedFor':1.0, 

        'SuperThematicKLine':1.0, 

        'DefinedAs':1.0, 

        'LastSubeventOf':1.0, 

        'LocationOf':0.9, 

        'CapableOfReceivingAction':0.6, 

        'CapableOf':0.8, 

        'PrerequisiteEventOf':1.0, 

        'MotivationOf':1.0, 

        'PropertyOf':1.0, 

        'PartOf':1.0, 

        'EffectOf':1.0, 

        'DesireOf':1.0, 

        'ConceptuallyRelatedToInverse':0.0, 

        'IsAInverse':0.0, 

        'FirstSubeventOfInverse':0.0, 

        'DesirousEffectOfInverse':0.0, 

        'ThematicKLineInverse':0.0, 

        'MadeOfInverse':0.0, 

        'SubeventOfInverse':0.0, 

        'UsedForInverse':0.0, 

        'SuperThematicKLineInverse':0.0, 

        'DefinedAsInverse':0.0, 

        'LastSubeventOfInverse':0.0, 

        'LocationOfInverse':0.0, 

        'CapableOfReceivingActionInverse':0.0, 

        'CapableOfInverse':0.0, 

        'PrerequisiteEventOfInverse':0.0, 

        'MotivationOfInverse':0.0, 

        'PropertyOfInverse':0.0, 

        'PartOfInverse':0.0, 

        'EffectOfInverse':0.0, 

        'DesireOfInverse':0.0, 
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        } 

if textnode_list_weighted_p, then each element of textnode_list 

is not a string, but instead, of the form: ('dog',0.5) 

where the cdr is the relative origin weight of that concept. 

 

Finally, the matching algorithm uses the project_details function to  bring out 

hierarchical structures, if any within a particular argument-predicate  tuple. 

 

project_details(textnode_list) 

-inputs a list of concepts 

-computes the detail projection, which consists of 

a thing's parts, materials, properties, and instances 

and an event's subevents 

-returns a rank-ordered list of concepts and their scores 

e.g.: (('concept1',score1), ('concept2,score2), ...) 
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4.1 Personal Finance 
 

There exist numerous investment tools [24,25,26,27,28,29,30] that claim to come up with 

the best strategies for asset allocation through a sequence of questions to gauge the user's 

inclination towards investment and willingness to take risks. But in our research what we 

found was the lack of sufficient control to the user, limited personalization and limited 

usability scenarios. The tools need a richer interactive experience. These tools do not 

seem to exploit commonsense knowledge to either achieve the user's goal or to make the 

interaction more natural. Common sense, as we understand it in today's world is shared 

knowledge that puts everyone on the same page and provides an enormous closeness to 

human thought, hence making communication easier and more intuitive. Common sense 

can be used to explain the success and failure of different scenarios and help troubleshoot 

problems along the lines of Woodstein [31], an interactive debugger. It is similar to 

Woodstein in providing system feedback at all stages of processing, however it differs from 

Woodstein in the respect that Woodstein didn’t make any analogical reasoning to provide 

these elicitations and explanations. 
 

 

Some of the primary motivations for this system are as follows: 

a) Goals and Motivations play a big part in financial decisions as “mental 

accounting” research in behavioral economics emphasizes [32,33]; 

b) Poor saving habits and skewed risk attitudes [34,35]; 

c) Existing Investment tools: 

- Lack explanations/rationales, interactivity, customizability; 

- Limited usability scenario, and 

- Lack Common Sense. 
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In this project there is an attempt to bridge the gap between naïve and expert knowledge 

systems by providing an intuitive interactive framework where the user can interact with 

the system using natural language sentences without being overwhelmed by the expert 

knowledge processing that the system performs. For instance, lay users cannot objectively 

specify their risk tolerance, as they may not be aware of the repercussions of taking low or 

high risk, so it is essential for the tool to engage in a dialogue and gauge the users' risk 

tolerance.  

 

Besides, the system uses a goal-oriented Concrete Budgeting framework, which has been 

developed with Professor Dan Ariely.  The central premise is that people are irrational 

spenders and if a tool can provide means to account for different real-life goals of a 

person, it can help the person in making appropriate saving plans. Users can specify 

different type of investment accounts, which are differentiated using different timeline 

requirements to achieve the account goals [see Figure 10 below]. These accounts from 

Concrete Budgeting are mapped to the associated concepts in ConceptNet. For instance, 

an account like “Auto” is mapped to the contextually relevant concepts of “car”, “vehicle”, 

“road” etc in ConceptNet for further processing. 
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Figure 10: Concrete budgeting Interface for adding and editing accounts 

 

 

 

 In the following section, we describe the functional architecture followed by brief 

descriptions of various underlying components in subsequent sections.  

4.1.1 InvestAssistant Architecture and Components 

 

The system architecture involves the following components: 

• Common Sense Analyzer (CSA) 
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• Expert financial engine 

• InfoFilter -Information Filter 

• OMCS Interface 

• Investment Strategies 

 

 

 

 

Figure 11: InvestAssistant functional architecture 

 

 

The investment strategist interprets the analyzed request from the CSA and accumulates 

relevant information from the InfoFilter and Expert Financial Engine. The CSA plays a 

crucial role in bridging the gap between natural man-machine interactions and expert 

system processing. CSA comprises of a Natural Language Understanding front-end, which 

processes the user's commands in natural language to extract investment and goal 
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semantics. This abstract level semantics is correlated with the common sense knowledge 

base in order to establish various goal and action dependencies. The CSA implements an 

interface, which interacts with the OMCSNET using SOAP (Simple Object Access 

Protocol) messages. OMCS is configured to run as a web service, which is queried to 

extract semantic associations in the form of predicates. 

 

4.1.2 SYSTEM DESCRIPTION 

The input to the system contains the investment amount, timeline and intended purpose. 

The output is suggestions for asset allocations and best individual asset picks. The system 

contains a natural language dialogue framework, an in-built browser and a user-interface 

to exchange information with the system and to retrieve explanations and history of 

interaction, all interfaced to a common-sense database. 

 

4.1.2.1 Common Sense Analyzer 
Contemporary research in the area of interactive goal-driven systems has emphasized the 

importance of having a dialogue-based interaction as opposed to fixed menu or scenario 

based interactions with the user [10]. However, having dialogues in the mode of natural 

languages requires that the system have adequate language understanding capabilities, 

fail-soft inference and deduction mechanisms. It is imperative that the system has 

sufficient common sense knowledge and optimal application-specific knowledge i.e. 

expert knowledge. From the usability point of view, it is also desired to maintain a 

seamless and intuitive interface that bridges these two different types of knowledge pieces. 

 

In InvestAssistant, our central goal is to achieve this kind of interactivity, without 

sacrificing application performance or overloading the end user with the application 

specific modus operandi. The key idea is to specify suitable mappings from natural 

language utterances to expert system behaviors and vice versa. The important thing to 

note here is that these mappings are dynamic in the sense that they evolve with 
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interactions, they are personalized based on the user’s profile, and they get refined as the 

common sense knowledge base gets richer. 

 

 

Figure 12: Commonsense information about goal 

 

 

 

Figure 13: Related concepts to “buy house” 

 

 

4.1.2.2 Natural Language Understanding (NLU) Unit 

All the user’s requests are first tagged using a Parts of Speech (POS) Tagger. The tagged 

text is chunked using a text-chunker, which groups tagged words within an utterance to 

disjoint classes based on some pre-defined rules. Further, a semantic analyzer produces 

the semantic parse of the sentence in the form of an n-ary argument structure. (Refer to 

Figure 14) 
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The semantic parse obtained in this manner specifies the actual action semantics for the 

application. One of the key derivations is the frame structure that is built upon this 

semantic parse. Based on the verbs occurring in the semantic parse and respective 

synonyms, the NLU unit constructs a frame-based semantic structure [36,37,38,39], which 

is then correlated with the lexical predicates in the ConceptNet (see Figure 16). 

 

 

 

-------------- Tagging User Request ----------- 

I/PRP want/VBP to/TO invest/VB 1000/CD 

dollars/NNS 

 

-------------- Chunking User Request ----------- 

(NX I/PRP NX) (VX want/VBP to/TO invest/VB 

VX) (NX 1000/CD dollars/NNS NX) 

 

-------------- Semantic Parse of the request in 

the form: (Verb-Subj-Obj-Obj) ----------- 

("invest" "I" "1000 dollar") 

Figure 14: Semantic Parsing 

 

The frame structure comprises of hierarchical event-object structures derived from the 

semantic parse and chunked-text. This kind of generic type-based construction has 

subsequent positive implications on goal planning and iterative interaction with the 

ConceptNet [40]. 

 

4.1.2.3 Action Planning 
The system needs to map the derived semantics from the user’s utterance to the intentional 

goal structures and in turn to its own application level goal planning. As the investment-
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strategy process is iterative and state-based, it seemed appropriate to model it using finite 

state automata, where states are characterized by the various steps needed to lay out an 

investment strategy and the transitions encode various choices that the user can express 

using natural language.  

 

 

 

 

 

 

 

 

 

 

Figure 15: Dependent Actions map 

 

Essentially, goals have slot-filler type structures and by progressing through the state 

automata, it is made feasible to attain the level where adequate investment advice could 

be extracted from the expert system. For instance, refer to Figure 16 for the frame structure 

for the "invest_goal". 
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<<<Frame Name: invest>>> 

Type : event 

Subject : I 

Objects:  

Object 1 :<<obj1>> 

Type : dollar 

Attributes :  

Attribute 1:<<attr1>> 

     Attribute_Name:  

individuation 

                                 Attribute_Value : 

1000 

 

Figure 16: Frame Representation for “invest money” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Frame-based slot Representation for “buy” 

 

<<<Frame Name: buy>>> 

Type : event 

Subject : USER 

Objects:  

Object 1 :<<obj1>> 

Type : THING 

Attributes :  

Attribute 1:<<attr1>> 

Attribute_Name: TEMPORAL 

Attribute_Value : _time_value 
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Similarly, the invest_action requires an "invest" frame, where the slots pertaining to the 

investment object is filled with the money to be invested. Naturally, maintaining frame 

semantics of an utterance has advantages as the utterance frames can be compositionally 

correlated with the action frames (for example, subsumption criteria), thus providing a 

computationally efficient and an incremental approach to collaborative goal-oriented 

action planning and goal execution. 

 

4.1.2.4 Common Sense Inference 
 

One of the key issues that we address is that of decomposition of semantics into simpler 

structures that are efficient from a computational standpoint. Frame semantics is an 

elegant framework for characterizing fully specified semantics. However, due to the 

inherent ambiguity and potential for multiple senses, it becomes essential to correlate the 

fully specified frame semantics to the relevant senses. Also, from the action planning point 

of view it is necessary to articulate necessary and sufficient steps to achieve the desired 

goal. The common sense knowledge fulfills both of these requirements as it encodes 

multiple senses in a semantic network, where traversal along a particular path could 

reflect various steps needed to complete a particular goal [16]. 

 

As mentioned earlier, we use OpenMind [1] as the source for the common sense 

knowledge. OpenMind is a web-based collaborative project that aims towards acquiring 

knowledge in the form of English sentences that we use in our day-to-day activities. This 

knowledge is structured in a semantic network that specifies predicate-based semantics. 

 

Therefore, we construct relevant queries pertaining to the user’s goal and accounts [Figure 

18], which are used to gather other senses of the goal as well as other goals, which are 

required to achieve the goal. For instance, a typical OMCS query ‘buy house’, produces 

binary predicate structures: 
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• (EventForGoalEvent "buy house" "apply for mortgage") 

• (EventForGoalEvent "buy house" "ask for loan") 

• (EventForGoalEvent "buy house" "avoid house with termite") 

• (EventForGoalEvent "buy house" "be careful") 

• (EventForGoalEvent "buy house" "contact real estate agent") 

• (EventForGoalEvent "buy house" "contact your local real estate agent") 

 

 

Figure 18: Goal-oriented investment account information 
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Figure 19: Google Interface to expert sites 
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4.1.3 Moving Into the Expert Domain 

At this point we do some handholding with the user to better define the goal. We split this 

phase into three parts.  

 

First, we use the concepts as queries and crawl the web to get the most relevant links that 

offer information about the goal. So, from the earlier example of "buy house", common 

sense comes back with facts like "real estate". The links that InvestAssistant returns will 

pertain to contacting real-estate agents and buying a house. The web provides a wealth of 

well-conducted research on various topics hence offering the expertise required to narrow 

down the goal. We carefully extract the best links and display it in a menu along with an 

in-built browser for the user to navigate.  

 

Second, the user now navigates the web to get more information about the goal. While 

this is happening, our tool is "listening" to the hyperlinks. When the user finally closes on 

a price or value it is passed to the system and in the backend the current URL is captured 

for two reasons. One is to be able to return to the site at a later point either for debugging 

purposes or to redo the selection. Two is to extract other options that the tool can suggest 

to the user, if the current choice was not good.  

 

Part three of our expert system is an information filter where we have an agent that goes 

out to the web looking for financial information particularly pertaining to making 

investments. The search is intelligent in that it looks at different industries and companies 

and extracts the factors that affect the performance of the market, like the volatility, price-

earnings ratio, etc. At the point this filter is triggered, the agent has at its disposal the asset-

allocation determined earlier. So the input to the filter will be the expected performance of 

the various investments (like stocks, bonds, money market) in order to meet the user's goal 

and if necessary make a profit. Subsequently, the system provides mechanisms to specify 

expected timeline of investment and intuitive way to set and edit risk levels associated 

with all the user investment accounts [Figure 20]. 
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Figure 20: Risk profiling for individual investment accounts 

 

4.1.4 Common Sense Investment Strategy 

 

The initial asset allocation is determined from the users' goal, timeline and risk tolerance. 

Now, we delve into each allocation and use a combination of commonsense [7] and 

expert knowledge to pick the top performing industries and companies the user may 

consider investing in and we explain the reasons behind making this selection. The typical 

domain-specific expert common sense facts used are as follows: 

• ‘high risk’ -> ‘possible high return’ 
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• ‘high return’ -> ‘better chance by investing in stocks’ 

• (PropertyOf "diversified stock" "good growth with high consistency over long term") 

• (PropertyOf "good stock" "larger the growth rate of dividends and earnings") 

• (CapableOf "high stock allocation" "good return for small amount of capital") 
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Figure 21: Asset allocation chart 

 

 

 
Figure 22: Expert Commonsense knowledge 
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4.2 Online HelpDesk 
 

 

Most of the computer systems have some sort of expert help system for troubleshooting 

any problems or issues with the provided services. Usually, a help system is a separate 

module embedded in the system that is oriented to give a quick reference or a task-

specific help. Traditionally, these systems are designed to solve problems concerning how 

to use the system, or to improve user’s performance while using it.  A sample help advice 

can be like as follows: 

 

“If you are having trouble connecting to AOL at home, follow the following steps to help guide. 

You do not have to be connected to AOL for this. 

 

1. Be sure that you have already installed the AOL client onto your laptop. 

2. Click on the AOL icon to open the client. 

3. Choose the —Help“ tab.” 

 

Typically, help systems employ manuals to provide advices about domain-specific topics 

to the user. An online help manual usually has an explorer-like interface and is divided 

into two panes: the Navigation pane and the Content pane (as can be seen in the AOL 

HelpDesk, Figure 23 and 24). Some advanced help systems like HEAT [41] go beyond 

simple FAQ-like formats and provide contextual help pages that address issues with the 

specific topic. Even though, these systems have good coverage of the domain, they are 

invariably hard to use by an end user and are unwieldy in the advising process. Most often 

than not, users do not have much domain knowledge and exposure and hence, cannot 

understand help descriptions in the domain-specific jargon. Generally, understanding and 

learning is based on what people do while solving problems. For solving a problem one 

might need more information or just make use of what one knows already. However, in it 

is common in existing help systems that after solving a problem how it was solved is lost 

for others that, very likely, will need to solve the same or a similar problem in the future. 
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Even more frustrating is the situation in which for a previous problem the use solved, user  

cannot remember how (s) he arrived at the solution. The prevalent expert systems do not 

provide any transparent and clear way of sharing their helping process with the user. 

Moreover, as these systems have limited or no notion of the general user model, their 

interaction scenarios and explanations are severely limited. It makes difficult for the user 

to comprehend the expert advisory solution, as there is no way for him to co-relate the 

domain-specific solution to his day-to-day activities and knowledge. 

 

Additionally, most of the existing help systems have some kind of keyword-based search 

to locate help topics and associated knowledge material. However, this is also a severe 

limitation, as domain knowledge cannot be uniquely interpreted by context-free 

associations of keywords. As can be seen in the Figure 25, when the user asks the AOL 

HelpDesk system about “how to remove an icon from toolbar”, the system returns results 

about emails rather than icons and toolbar due to inaccuracies in searching and domain-

knowledge representation. Indeed, dealing with domain knowledge is a matter of 

understanding the specific context, domain-related concepts and rules that can be applied 

to these concepts. 
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Figure 23: AOL HelpDesk Navigation Pane 

 

 

 

 

 

Figure 24: AOL HelpDesk Content Pane 
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Essentially, the existing help systems do not provide sufficient control to the user, and 

have limited user models and usability scenarios. These tools need a richer interactive 

experience in eliciting and explaining knowledge to the user. This would require having 

some reasonable coverage of user knowledge and providing ways to map the expert 

knowledge to novice knowledge and vice versa. Commonsense knowledge mined from 

the OpenMind project provides a rich and substantially wide coverage of novice 

knowledge, which can be used to bridge the gap between the user and the help assistant.  
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Figure 25: AOL keyword-based search 
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In this collaborative project with AOL, we have built an interactive chat application called 

SuggestDesk, which attempts to bridge the gap between novice AOL users, who do not 

have much knowledge about computers and AOL’s help knowledgebase by providing an 

intuitive interactive framework where the user can interact with the system using natural 

language sentences without being overwhelmed by the expert knowledge processing that 

the system performs. For instance, the user can chat with the help assistant and 

communicate that,“browser is running slow”, without trying to figure our keywords that 

would return appropriate results. The system understands the user’s utterance and employs 

structure mapping to deduce relevant analogies, which are provided to the help assistant 

so that he can make relevant elicitations and explanations about the problem at hand. 

 

In the following are some of the reasons why common sense knowledge can be useful for 

HelpDesk applications: 

a) Bridge between novice and expert 

b) Plausible elicitations and explanations for specific problems 

c) Scope for dynamic and interactive scenarios by using natural languages 

d) Richer personalization 

 

In the following sub-sections we provide detailed description of the SuggestDesk system. 

4.2.1 SuggestDesk: System Description  

 

The SuggestDesk system comprises of the following components: 

 

4.2.1.1 Natural Language Understanding (NLU) module 
 

User can input his problems or issues in natural English and the system employs the NLU 

module to process the user utterance. NLU uses a shallow language parser, which is able 

to handle simple English sentences. The parser can understand semantic units in the 
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utterance. However, the end goal is not to achieve perfect understanding of the meaning 

of free form text, as this is practically unachievable given the inaccuracies in parsing.  

 

User’s inputs are first tagged using a Parts of Speech (POS) Tagger. The tagged text is 

chunked using a text-chunker, which groups tagged words within an utterance to disjoint 

classes based on some pre-defined rules. Further, a semantic analyzer produces the 

semantic parse of the sentence in the form of an n-ary argument structure (see Figure 26 

below). 

 

 

 

 

 

 

 

 

 

 

Figure 26: Semantic Parse of “browser is running slow” 

The semantic parser also produces additional extracted phrase structures as follows: 

result = [{prep_phrases_tagged=[], verb_phrases_tagged=[is/VBZ 
running/VBG], verb_arg_structures_concise=[("run" "browser" "slow")], 
noun_phrases=[browser], noun_phrases_tagged=[browser/NN], 
adj_phrases_tagged=[slow/JJ], verb_arg_structures=[[is/VBZ 
running/VBG, browser/NN, [slow/JJ]]], modifiers_tagged=[slow/JJ], 
prep_phrases=[], verb_phrases=[is running], 
parameterized_predicates=[[[run, [past_tense, passive_voice]], 
[browser, []], [slow, []]]], modifiers=[slow], adj_phrases=[slow]}] 

 

The semantic parse obtained in this manner provides useful semantic chunks in form of 

the above structures. One of the key derivations is the frame structure that is built upon 

this semantic parse. Based on the verbs occurring in the semantic parse and respective 

-------------- Tagging User Request ----------- 

browser/NN  is/VBZ running/VBG  slow/JJ 

-------------- Chunking User Request ----------- 

(NX browser/NN NX) (VX is/VBZ running/VBG 

VX) slow/JJ 

-------------- Semantic Parse of the request in 

the form: (Verb-Subj-Obj-Obj) ----------- 

("run" "browser" "slow") 
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synonyms, the NLU unit constructs a frame-based semantic structure [36,37,38,39], which 

is then correlated with the lexical predicates in ConceptNet and ExpertNet (see Figure 27 

below). 

 

 

 

 

 

 

 

 

 

Figure 27: Frame representation of “browser run slow” 

 

The frame structure comprises of hierarchical event-object structures derived from the 

semantic parse and chunked-text. This kind of generic type-based construction has 

subsequent positive implications on goal planning and iterative interaction with the 

ConceptNet [15]. 

 

 

 

 

 

 

 

 

 

 

<<<Frame Name: run >>> 

Type : event 

Subject : browser 

Modifier: slow 

Objects: <> 
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4.2.1.2 SuggestDesk User Interface 
 

The SuggestDesk user interface implements an interactive chat-based client, which both 

the user and the Help Assistant use. The interface (see Figure 28 on the next page) enables 

natural language dialogue between the user and the assistant by means of text dialogue 

boxes at the bottom of the interface. The leftmost pane is used as the primary message 

window, where both user’s and assistant’s messages can be seen. This primary pane 

maintains the complete sequence of user-assistant interaction, until the user closes the 

client window.  On the right hand side are two panes that are only visible to the Help 

Assistant. This is because analogically mapped knowledge is produced in these windows 

and if this is exposed to the user (s)he might be overwhelmed by the domain-specific 

knowledge and might lead to more confusion. On the other hand, the assistant being the 

domain expert knows precisely how to use this information in order to provide relevant 

elicitation questions and explanations. The top right pane is used to provide a list of 

similar objects as the frame structure derived from the user’s input based on object 

attributes and modifier matches. The middle right pane is used to provide analogy-based 

diagnosis of the problem formulated by the user in context of the objects provided in the 

top right pane. Thus, the assistant can see similar objects and analogically related 

diagnosis for the problem at hand and provide the user with better informed answer. Also, 

the assistant uses the analogies to explain the solution correlating it with some day-today 

like situation faced by the user.  Thus, the interface provides an intuitive and easy way to 

facilitate natural and seamless dialogue between the user and the assistant. 
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Figure 28: SuggestDesk User Interface 
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4.2.1.3 Commonsense Processor (CP) 
 

The Commonsense Processor (CP) processes the frame object derived from user’s 

utterance to match it to the novice model constructed using the commonsense knowledge 

base. Some sample commonsense knowledge about computers looks like as follows: 

 
 

 
 

Figure 29: Sample OpenMind Knowledge 

 

The aggregate commonsense knowledge in form of these English sentences is processed 

using the NLU parser and converted into predicate-argument structures. These structures 

are organized into a semantic graph, where nodes represent the concepts and edges 

represent relation amongst the concepts. In the following is a sample of such structures, 

where f is the number of outgoing edges, while i is the number of incoming edges: 

 
(IsA "family" "group of person" "f=2;i=0;") 
 
(CapableOfReceivingAction "story" "contain" "f=0;i=10;") 
 
(LocationOf "water" "in toilet" "f=2;i=0;") 
 
(UsedFor "write" "communication" "f=2;i=0;") 
 
(LocationOf "trash" "in dumpster" "f=4;i=0;") 
 
(CapableOfReceivingAction "exposure" "extend" "f=0;i=4;") 
 
(UsedFor "work of art" "admire" "f=2;i=0;") 
 
(UsedFor "computer" "compute" "f=2;i=1;") 
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4.2.1.4 Expert Analyzer (EA) 
 

The Expert Analyzer (EA) builds a semantic network of domain knowledge in a similar 

way CP builds the novice semantic network. EA uses the AOL Help knowledge base (see 

Figure 30 on the next page) to mine help topics related to key concepts in the help 

domain, such as the following: 

 
Browsers download pictures and files to computer. 

It helps in faster reload of the webpages.  

These files are known as browser cache or Temporary Internet 

Files. 

After sometime, the cache size may build up and cause the browser 

to slow down if it is not cleaned.  

 

Browsers can be vulnerable to viruses. some free applications can 

have viruses. 

Viruses use browser’s resources. This may cause the browser to run 

slowly. 

 

EA employs the NLU unit to parse and chunk these topical sentence fragments into 

predicate-argument type semantic units. These structures are organized into a semantic 

graph called ExpertNet, where nodes represent domain-specific concepts and edges 

represent the relations. For instance, the ExpertNet for help domain has the following 

structures related to Internet and browsers: 

(IsA 'internet explorer' 'browser') 

(CapableOf 'browser' 'download files') 

(CapableOf 'browser' 'download applications') 

(EffectOf 'surf internet' 'download files') 

(EffectOf 'surf internet' 'download applications') 

(EffectOf 'download files' 'browser cache is large') 

(EffectOf 'download applications' 'browser infected by virus') 

(EffectOf 'hacked by hackers' 'browser doesn't start') 

(EffectOf 'PC infected by virus' 'browser run slow') 
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Figure 30: AOL’s  knowledge base interface 

 

 

 

 

 

 



 

 

70 of 100 

4.2.1.5 Analogy Mapping Engine (AME) 
 

The Analogy Mapping Engine (AME) uses the ConceptNet and ExpertNet as constructed 

above to perform novice-expert knowledge mapping. Since, both the ConceptNet and 

ExpertNet are similar in graphical structure, the AME is able to perform fast and efficient 

graph matching algorithm. AME implements a variation of the Structure Mapping 

Algorithm to align the two graphs and matches concepts in both the networks depending 

upon node attributes and respective relations. Subsequently, AME looks at the precise 

frame description of the user problem to perform matching in a hierarchical manner. For 

instance, in the example of, [[browser], [run slow]], AME first aligns both graphs using the 

verb, [run] and further, computes the similarity based on modifier relations, like in the 

following sample result: 

Analogies:[[computer, [[UsedFor, surf internet, 1.1887218755408673], 
[CapableOfReceivingAction, run slow, 1.1887218755408673], 
[CapableOfReceivingAction, crash, 1.1887218755408673], 
[CapableOfReceivingAction, start, 1.1887218755408673]], 
6.1887218755408675], [car, [[CapableOfReceivingAction, damage, 
1.1887218755408673], [CapableOfReceivingAction, crash, 
1.1887218755408673], [CapableOfReceivingAction, start, 
1.1887218755408673]], 5.930167946706389], [software, 
[[CapableOfReceivingAction, run slow, 1.1887218755408673], 
[CapableOfReceivingAction, crash, 1.1887218755408673], 
[CapableOfReceivingAction, install, 1.1887218755408673], 
[CapableOfReceivingAction, install, 1.1887218755408673]], 
5.855516191543203]] 

 

AME provides a ranking mechanism for the analogous structures as specified by the 

following function: 

get_analogies(concept) 

-the strength of an analogy is determined by the number 

and weights of each feature. a weighting scheme is used 

to disproportionately weight different relation types 

and also weights a structural feature by the equation: 

log(f+0.5*i+4), where f= outgoing edges 

i = incoming edges 
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4.2.1.6 Elicitation and Explanation Processor (EEP) 
 
The Elicitation and Explanation Processor (EEP) retrieves the analogies from AME and 

processes the ranked list of analogies that match the given user problem. It analyzes each 

analogy and looks at the structure relations in order to construct diagnostic elicitations. 

For instance, for the “browser is running slow” example, EEP retrieves the list of possibly 

analogous objects matching browser for the “running slow” property (see Figure 31 

below). 

 

 

Figure 31: Analogy Interface 

 

EEP processes every concept in this list to enumerate causes for this property using the 

ConceptNet and ExpertNet. After retrieving the likely analogous causes, it outputs the 

analogies and associated diagnoses in the “Diagnosis for Elicitation” window (see Figure 

32 on the next page). Thus, EEP enables delivery of analogies and associated diagnostic 

information to the SuggestDesk UI.  
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The Figure 33 illustrates a complete interaction scenario for the “browser is running slow” 

scenario, where EEP provides relevant analogies, which is used by the assistant to elicit 

and explain domain-specific knowledge in novice’s terms.  

 

 

 

 

Figure 32: Analogy-based Diagnoses for similar concepts 
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Figure 33: SuggestDesk complete interaction 
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5 Implementation 
 

The i-Seek system is implemented in Python and Java. Additionally, it uses XML-RPC to 
communicate to the ConceptNet and ExpertNet servers. 
 
Some of the principal components and snippets of implementation are illustrated in the 
following: 
 
1) XML-RPC Server 
 
Steps: 
a) Importing ConceptNet database 

 
import ConceptNetDB 

   … 

b) Importing Predicates file 
pred_filename = "predicates.txt" 

 

c) Loading ConceptNet predicates 
print "Loading Predicates from %s..."%pred_filename 
c =ConceptNetDB.ConceptNetDB(None) 
.. 
xmlrpc.serve_forever() 

 

 

2) Analogy Mapping Engine 
 
Steps: 
a) Definition 

def 
get_analogous_concepts(self,textnode,simple_results_p=0): 
 decode_node,encode_node,encode_word,decode_word = 
self.decode_node,self.encode_node,self.encode_word,self.dec
ode_word 
 

b) Encoding the text node        
        textnode=textnode.strip() 
        encoded_node = encode_node(textnode) 
 

c) Searching and Structure Mapping algorithm implementation 
for fe in fes: 

            commonpred,commonnode,f,i = fe 
            if commonpred in linktype_stoplist: 
                continue 
            bes = bw_edges.get(commonnode,[]) 
            bes = map(edgeuid2zipped,bes) 
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            bes = filter(lambda x:x[0]==commonpred and 
x[1]!=node_uid,bes) 

            for be in bes: 
                commonpred2,candidate,f2,i2 = be 

                link_strength = 
math.log(f+f2+0.5*(i+i2)+2,4) 

weight = 
link_strength*linktype_weights.get(decode_word(commonp
red),1.0) 

 
  

3) get_context from Java 
 
Steps: 
a) Function Definition 

def get_contextFromJava(self, 
textnode,max_node_visits=500,max_results=200,flow_pinch=300
,linktype_weights_dict=None,textnode_list_weighted_p=0): 
        textnode=textnode.strip() 
        textnode_list = string.split(textnode," ") 
        return 
self.get_context(textnode_list,max_node_visits,max_results,
flow_pinch,linktype_weights_dict,textnode_list_weighted_p) 
 

 

4) Data Structure for Expert knowledge piece 
 

public class Expert  
{ 
 String relation=""; 
 String arg1=""; 
 String arg2=""; 
 public static void main(String[] args) { 
 } 
} 

 

5) Processing Analogies 
 
Steps: 
a) Function Definiton 
 
private LinkedList processAnalogies(String analogies, String subeve)  

   

b) Extracting Analogies 
     
       if(analog.charAt(i) == ',') 
           { 
         count++; 
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         if(count == 2) 
      index1 = i; 
           } 
       if(analog.charAt(i) == '[') 
          
           {  
        count1++; 
        if(count1 == 3)  
        { 
            index2=i; 

            anentity = 
analog.substring(index2+1, index1); 

             
            aclist.add(anentity); 
            break; 
     … 

 

6) Processing User’s Request 
 

Steps: 
a) Function Definition 

 
public void processRequest(String un, String message) 

     
  

  b) Setting up XML-RPC server connection   
 String server_url = "http://localhost:8000"; 
     
                // Create an object to represent our server. 
                SimpleXmlRpcClient  server = new 
SimpleXmlRpcClient(server_url); 
     
    
    // Build our parameter list. 
                Vector params = new Vector(); 
 
  // Call the server, and get our result. 
         
               params.addElement(message); 

         
         

c) Calling the ConceptNet XML-RPC server and invoking NLU unit        
 try { 

p.addElement(server.execute("nltools.generate_extraction", 
params)); 

  } catch (IOException e2) { 
   // TODO Auto-generated catch block 
   e2.printStackTrace(); 
  } 
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        String subj = 
(server.execute("nltools.jist_entities", p)).toString(); 

         
        subj = (String) subj.subSequence(1, 
subj.length()-1);       

                 
        String  eve= ""; 

        
if(((List)(server.execute("nltools.jist_subj_events", 
p))).size() >0) 

eve = (server.execute("nltools.jist_subj_events", 
p)).toString(); 

         
         

d) Processing Expert domain 
   
   

 for(int i=0;i<aclist.size();i++) 
      { 
   in++; 
   if(in >20) break; 
   String analogsubj =  (String)aclist.get(i); 
   analog += "\n"+ "("+i+") "  + analogsubj; 
   for(int j=0; j<exlist.size();j++) 
       { 
     
    
    ao.subj = analogsubj; 
    ao.prob = analogsubj+ " " + subeve; 
    

if(((eveindex1 > -1) || (eveindex2 > -1)) && 
(subeve.length() > 0)) 

         { 
     
 if(rel.equalsIgnoreCase("EffectOf")) 

diag += "Analogically, for 
"+ analogsubj+ " \n if " + arg1 + " ---> then  " + 
arg2+"\n"; 

      ao.EffectOf = arg1; 
      analoglist.add(ao); 
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6 Evaluation 
 

The primary goal of the i-Seek system is to provide a clear and intuitive interface for non-

expert users to seek domain-specific information. To evaluate the efficacy of the system, 

the collaborator at AOL has conducted empirical user evaluation of the i-Seek system. 

Besides performing experiments at MIT, we thought it would be useful to do evaluations in 

an industry setting as well. The central premise to be evaluated is whether advisory 

systems advice with commonsense-enabled elicitation and explanation framework are 

better than those without the commonsense knowledge in terms of user experience, task 

completion, and usability. 

 

Hypothesis 

The hypothesis to be tested was that the users of i-Seek in presence of the commonsense 

model would execute tasks in shorter times and with better precision than with omission 

of the commonsense model and as compared to other available expert systems. We also 

hypothesized that by using the i-Seek interface users would be better informed about a 

domain-related topic. Finally, we contend that the commonsense elicitation and 

explanation model would receive higher satisfaction ratings than the existing expert 

system interfaces. 

 

 

Purpose 

The purpose of the experiments was to compare i-Seek with the existing AOL HelpDesk 

system. We wished to determine that which system and associated interface was best for 

different tasks, what interface features the users preferred, and how the commonsense 

framework affects the system behavior. The independent variable was the type of the 

system used (such as i-Seek, AOL Help etc) while the dependent variable was the task 

execution time, success rates, and subjective satisfaction. To measure the task execution 

variable, the subjects received tasks sequentially and bookmarked the concluding advisory 
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page. If the user was not convinced with the system’s advice, (s)he carried on the 

interaction. At any stage, the user could mark the task as complete or failed and proceed 

to the next task. Thus, errors were factored into the study as higher task execution time. To 

measure the success rate variable, the user after concluding the task marked successful or 

failed against the task entry on a paper. For the subjective satisfaction variable, users filled 

out a user satisfaction questionnaire upon completion of the experiment.    

Design 

The evaluation user group consisted of 1 AOL collaborator and 4 MIT students. We 

collected both qualitative and quantitative data as part of the user surveys after every 

interaction with the system. This included measures such as task completion times, 

success rates and overall satisfaction with and without the elicitation-explanation model. 

There were 2 task scenarios, one related to browser performance issue, and the other one 

related to computer crashing problem. To start with the users filled out a preliminary 

questionnaire. Subsequently, the users were provided with an introduction and a training 

routine for both i-Seek and AOL HelpDesk system. The details of the training routine 

varied from interface to interface, but each session consisted of a demonstration of all 

features of the interface as well as dummy task scenarios. The subjects could ask any 

questions at any time during the training routines. After the training, users were asked to 

perform 2 practice task, similar in nature to the experimental tasks – one with i-Seek, and 

another with the AOL HelpDesk system.   

 

The breakdown of the experiment was as follows: 

    * Preliminary Questionnaire - 5 minutes 

    * Training - 10 minutes 

    * Tasks - 20 minutes 

    * User Satisfaction Survey - 10 minutes 
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Results 

 

Task 1 

 

Avg.Completion Time 

(in minutes) 

Success Avg. Satisfaction 

(from 1 - 10) 

AOL HelpDesk 10 Success (3/5) 5 

i-Seek SuggestDesk 4 Success (5/5) 9.0 

 

Table 2 : Results for Task 1, browser performance issue 

 

 

Task 2 

 

Completion Time Success Satisfaction 

(from 1 - 10) 

AOL HelpDesk 12 Success (2/5) 2 

i-Seek SuggestDesk 5 Success (4/5) 7.5 

 

Table 3: Results for Task 2, computer crashing issue 

As the results indicate in the above two tables, on average i-Seek’s SuggestDesk fared 

better than AOL’s HelpDesk in terms of average task completion time, success rate, and 

average satisfaction score. Moreover, 4 out of 5 users liked the analogies provided by the 

system.  
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7 Related Work 
 
Our research within the i-Seek project touches various aspects of contemporary research 

in Artificial Intelligence. Very broadly, our work can be related in some aspects to the 

following three sub-domains of AI: 

 

7.1 Knowledge Acquisition 
 

Knowledge acquisition has been a challenging area of research in AI, with its roots in early 

work to develop expert systems. In the early systems, knowledge acquisition was 

predominantly a manual process in which a human would encode domain knowledge in 

form of rules. However, as the systems got more and more complex, new techniques and 

interfaces were developed so that a domain expert could input the knowledge, which was 

further encoded into rules automatically. Although there has been considerable work in 

this area, activities have been distributed across several distinct research communities. For 

instance, in machine learning, learning apprentices acquire knowledge by non-intrusively 

watching a user perform a task, while in planning, mixed-initiative systems acquire 

knowledge about a user’s goals by taking commands or accepting advice regarding a 

task.  

 

Several notable works in the knowledge acquisition domain such as EXPECT [42] and 

TRELLIS [43] fall into the latter category. EXPECT is a rich system that uses ontologies and 

knowledge acquisition scripts to generate and advance dialogues with users to acquire 

and maintain knowledge bases of a diverse nature. Our approach is similar to EXPECT in 

the aspect that we use the acquired novice knowledge from the user to map it to expert 

domain and produce suitable elicitations, which reflects the system’s understanding of the 

user’s context. TRELLIS is an interactive web-based application for argumentation and 

decision-making.  The systems supports the user to create knowledge “snippets” from 

online information resources.  The key is to capture how the user progressively generates 

new knowledge that results in added value to the original raw information sources. As 
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EXPECT and TRELLIS systems realize that each user can have unique requirements of a 

system, they provide means for modifying task representations using constraint-

satisfaction. Depending on the specific context of the user interaction, certain constraints 

are considered to be predominant. These systems use these constraints to elicit more 

detailed information from the user. This way these systems enable a meta-reasoning 

framework, which can deal with composition of knowledge fragment in order to achieve a 

task, account for missing information, and context. Elicitations are in form of text questions 

that hide the inner system syntax and interfaces provide Browser-and-replace functionality 

for task. However, both EXPECT and TRELLIS systems are limited to elicitations only and 

provide very little information, if any of the rationale behind the specific task procedure 

undertaken by the system. Essentially, it is over-simplistically assumed that the user and the 

system share knowledge structures, which in many real life situations don’t hold true, 

especially in the context of expert advisory systems. Our research has shown that it is 

highly useful when the system is able to mediate the mapping from novice to expert so that 

the mapping primitives and structures could be reused not only for elicitation but also for 

explanation purposes. 

 

Some of the other knowledge acquisition issues related to our research have also been 

dealt by Timothy Chklovski in the LEARNER system, where the system learns by example 

knowledge pieces entered by users. Our expert and novice OMCS mimic similar behavior 

in terms of how users input the knowledge. However, we go beyond simple aggregation 

of knowledge by organizing the knowledge pieces in a semantic graph structure, which 

helps in performing efficient reasoning methods. 

 

7.2 Intelligent Tutoring Systems 
 

Traditional Computer Aided Instruction systems used to be inefficient, and expensive. 

Recognizing its deficiencies, Intelligent Tutoring systems were developed which attempted 

to adapt the speed and level of interactivity to that required by a student. Early Intelligent 

Tutoring Systems implemented variations of rule-based expert systems. These early 
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systems: 

• Contained a component with expertise in teaching 

• Contained expertise in the task being taught 

• Maintained a model of what the student has understood or possibly misunderstood 

 

Although, there is no standard architecture for an ITS, four components emerge from 

literature as part of an ITS [44,45,46,47]. These are the expert model, the student diagnosis 

model, and the curriculum model, and the instruction model.  

 

Much like a domain expert, the expert model in an ITS has in-depth knowledge about a 

particular domain. Traditionally, this knowledge is both factual and procedural and is 

maintained by an expert system. Factual knowledge represents information about the 

problem domain, while procedural knowledge contains knowledge of task procedures 

and rules that an expert uses to solve problems within that domain. The facility in the ITS 

for sequencing and selecting problems is the curriculum manager. To select the 

appropriate problems for the student, the curriculum manager extracts performance 

measurements from the profile stored in the student model. Like a human instructor, an ITS 

coaches the student through the use of an Instructional Environment, which facilitates 

explanations. The instructional environment provides the student with tools for proceeding 

through a tutorial session and obtaining help when needed. It also determines when the 

student needs unsolicited advice and triggers its display.  

 

i-Seek also maintains expert and novice models along the lines of Intelligent Tutoring 

systems, but goes beyond simple diagnostic explanations that ITS systems are capable of 

providing. As ITS systems have narrow coverage of user model or the domain is severely 

limited, these systems are not able to elicit domain-independent feedback from the user. 

However, in i-Seek we have broader commonsense knowledge and narrow domain 

knowledge available, which enables it to perform fail-soft reasoning. In case the system 

doesn’t find any relevant domain information, it falls back on the general commonsense 

knowledge and elicits useful information from the user. We believe that i-Seek architecture 
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could be ideal for an Intelligent Tutoring system as well. 

 

 

7.3 Analogy-based Expert Systems 
 

Most of the interactive applications that try to map disparate knowledge pieces employ 

some form of analogical reasoning. Indeed, Analogy-making is crucial for human 

cognition. Many cognitive processes involve analogy-making in one way or another: 

perceiving a stone as a human face, solving a problem in a way similar to another problem 

previously solved, arguing in court for a case based on its common structure with another 

case, understanding metaphors, communication emotions, learning, translating poetry 

from one language to another [48]. All these cases require a suitable mapping to be 

established between two cases or domains based on their shared structures and common 

systems of relations. 

 

 

Analogy-making is a very basic cognitive ability, which appears to be present in humans 

from a very early stage and develops over time. It starts with the simple ability of babies to 

imitate adults and to recognize when adults are imitating them, progresses to children’s 

being able to recognize an analogy between a picture and the corresponding real object, 

and ultimately, culminates in the adult ability to make complex analogies between various 

situations. This seems to suggest that analogy-making serves as the basis for numerous 

other kinds of human thinking and explains the important of developing computation 

models of analogy-making. 

 

Most of the existing work in this area can be divided along the following process of 

analogy-making: 

Representation 

This process is absent in most models of analogy-making. Typically, hand-made 

representations are fed into the model. However, there are some models 

(ANALOGY, CopyCat, TableTop, MetaCat) that do produce their own high-level 
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representations based on essentially unprocessed input. These latter models 

[49,50,51] attempt to build flexible, context-sensitive representations during the 

course of the mapping phase. Other models, such as AMBR [52] perform re-

representation of old episodes 

 

Retrieval 

There have been extensive studies experimentally and it is now clear that superficial 

similarity plays the major role in analogical retrieval i.e. the retrieval of a source for 

analogy is easier if it shares similar objects, similar properties, similar general theme 

with the target. Structural similarity, the familiarity of the domain from which the 

analogy is drawn, the richness of its representations and the presence of 

generalized schemas also facilitate retrieval. Most models of retrieval are based on 

exhaustive search of LTM and on the assumption that old episodes have context-

independent encapsulated representations. There are, however, exceptions (e.g. 

AMBR) that rely on context-sensitive reconstruction of old episodes performed in 

interaction with the mapping process. 

Mapping 

This is undoubtedly the core of analogy-making and therefore, all computational 

models of analogy-making include mapping mechanisms i.e. means of discovering 

which elements of the source correspond to which elements of the target. The 

difficulty is that one situation can be mapped onto a second situation in many 

different ways. We might, for example, make a mapping based on the color of the 

objects in both the source and target (the red-shirted individual in the base domain 

would be mapped to the red-shirted person in the target domain). This would, in 

general, be a very superficial mapping (but might, nonetheless, be appropriate on 

occasion). We could also map the objects in the two domains based on the 

relational structure. For example, we could decide that it was important to preserve 

the giver-receiver relationship in the first domain with the same relationship in the 

target domain, ignoring the fact that in the base domain the giver had a red shirt 

and in the target domain the receiver was wearing a red shirt.  
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Experimental work has demonstrated that finding this type of structural 

isomorphism between source and target domains is crucial for mapping [53]. 

Object similarity also plays a role in mapping, although generally a secondary one. 

A third factor is the pragmatic importance of various elements in the target – people 

try to find mappings that involve the most important elements in the target. 

Searching for the appropriate correspondences between the base and target is a 

computationally complex task that can lead to combinatorial explosion if the search 

is unconstrained. 

 

Transfer of unmapped elements from source to target, thereby making inferences  

This is the process of inserting new knowledge into the target domain based on the 

mapping. For example, assume a new type of car appears on the market and it turns 

out that this car maps well onto another type of car that is small, fast, and handles 

well on curves. But you also know that this latter type of car is frequently in need of 

repair. Transfer is when you wonder whether the analogous new model of car will 

also be in the garage often for repairs. Transfer is present in one form or another in 

most models of analogy-making and is typically integrated with mapping. Transfer 

is considered by some authors as an extension of the mapping already established, 

thus adding new elements to the target in such a way that the mapping can be 

extended.  

 

Evaluation.  

This is the process of establishing the likelihood that the transferred knowledge will 

turn out to be applicable to the target domain. In the example above, the evaluation 

process would have to assign the degree of confidence we would have that the 

new car would also frequently be in need of repair. Evaluation is often implicit in 

the mechanisms of mapping and transfer.  
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Learning.  

Only a few models of analogy-making have incorporated learning mechanisms, 

which is somewhat surprising since analogy-making is clearly a driving force 

behind much learning. However, some models are capable of generalization 

across the base and target, or across multiple exemplars, to form an abstract 

schema, as in LISA [54] and the SEQL model based on SME [55]. 

 

 

 

In the following we survey some specific models built on the above-mentioned 

contemporary works: 

 

7.3.1 Classical Symbolic Models  

 

ANALOGY  

The earliest computational model of analogy-making, ANALOGY, was developed by 

Thomas Evans (1964). This program solves geometric-analogy problems of the form 

A:B::C:? taken from IQ tests and college entrance exams.  

 

An important feature of this program is that the input is not a hand-coded, high-level 

description of the problem, but, rather, a low-level description of each component of the 

figure – dots, simple closed curves or polygons, and sets of closed curves or polygons. 

The program builds its own high-level representation describing the figures in A, B, C, and 

all given alternatives for the answer, with their properties and relationships (e.g. ((P1 P2 P3) 

. ((INSIDE P1 P2) (LEFT P1 P3) (LEFT P2 P3))). Then the program represents the 

relationship between A and B as a set of possible rules describing how figure A is 

transformed into figure B, e.g. ((MATCH P2 P4) (MATCH P1 P5) (REMOVE P3)) which 

means that the figure P2 from A corresponds to figure P4 from B, P1 to P5, and the figure 

P3 does not have a correspondent figure and is therefore deleted. Then each such rule is 

applied to C in order to get one of the alternative answers. In fact, each such rule would be 
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generalized in such a way to allow C to be applied to D. Finally, the most specific 

successful rule would be selected as an outcome. Arguably, one of the most significant 

aspects of the program is its ability to represent the target problem on its own — a feature 

that has unfortunately been dropped in most recent models.  

 

Structure-Mapping Theory  

Without question, the most influential family of computational models of analogy-making 

have been those based on Dedre Gentner’s (1983) Structure Mapping Theory (SMT). This 

theory was the first to explicitly emphasize the importance of structural similarity between 

base and target domains, defined by common systems of relations between objects in the 

respective domains. Numerous psychological experiments have confirmed the crucial role 

of relational mappings in producing sound and convincing analogies. There are several 

important assumptions underlying the computational implementation of SMT called SME 

[55]: 1) mapping is largely isolated from other analogy-making sub-processes (such as 

representation, retrieval and evaluation) and is based on independent mechanisms; 2) 

relational matches are preferred over property matches; 3) only identical relations in both 

domains can be put into correspondence; 4) relations that are arguments of higher-order 

relations that can also be mapped have priority since they implement the “systematicity 

principle” that favors systems of relations over isolated relations; and 5) construction of two 

or three interpretations by a ‘greedy merge’ algorithm that generally finds the ‘best’ 

structurally coherent mapping. Early versions of SME mapped only identical relations and 

relied solely on relational structure. This purely structural approach was intended to 

ensure the domain-universal nature of the mapping process. Recent versions of SME have 

explored some limited use of pragmatic aspects of the situation, as well as re-

representation techniques that allow initially non-matching predicates to match.  

 

The MAC/FAC model [56] of analogical retrieval was developed to be coupled with SME. 

This model assumes that episodes are encapsulated representations of past events, which 

have a dual encoding in LTM: a detailed predicate-calculus representation of all the 

properties and relations of the objects in an episode and a shorter summary (a vector 
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representation indicating the relative frequency of predicates are used in the detailed 

representation). These representations are used in two sequential stages in the retrieval 

process. The first stage makes use of the vector representations to perform a superficial 

search for episodes that share predicates with the target problem. The episode vectors in 

LTM that are close to the target vector are then selected for processing by the second 

stage. The second stage uses the detailed predicate-calculus representations of the 

episodes to select the one that best matches the target. These two stages simulate the 

dominance of superficial similarity on retrieval, but also the fact that retrieval is influenced 

by the structural similarity.  

 

The ideas of Gentner and colleagues, in particular, their emphasis on the structural aspects 

of analogical mappings, have been very influential in the area of analogy-making and 

have been applied to analogy-making in contexts ranging from child development to folk 

physics. Various improvements and variants of the SME have been developed over time 

and it has been included as a module in various practical applications.  

 

Other Symbolic Models  

A number of other symbolic models have played a role in the advance of analogy-making 

understanding. Jaime Carbonell proposed the concept of derivational analogy where the 

analogy is drawn not with the final solution of the old problem, but with its derivation, i.e. 

an analogy with the way of reaching up the solution is made, an approach developed 

further by Manuela Veloso. Smadar Kedar-Cabelli developed a model of purpose directed 

analogy-making in concept learning. Mark Burstein developed a model called CARL that 

learned from multiple analogies combining several bases. Mark Keane and his colleagues 

developed an incremental model of mapping, IAM, which would explain the order effects 

in presentation of the material. These symbolic models, as well as a number of other early 

symbolic models of analogy-making are described in detail in Hall (1989).  
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7.3.2 Connectionist Models  

 
Research in the field of analogy-making has, until recently, been largely dominated by the 

symbolic approach for an obvious reason: symbolic models are well equipped to process 

and compare the complex structures required for analogy-making. In addition, in the early 

years of the new connectionist paradigm, these structures were very difficult to represent in 

a connectionist network. However, advances in connectionist representation techniques 

have allowed distributed connectionist models of analogy to be developed. Most 

importantly, distributed representations provide a natural internal measure of similarity, 

thereby allowing the system to handle the problem of similar, but not identical, relations in 

a relatively straightforward manner. This latter ability is crucial to analogy-making and has 

proved hard for symbolic models to implement.  

 

Multiple Constraints Theory  

The earliest attempt to design an architecture in which analogy-making was an emergent 

process of activation states of neuron-like objects was proposed by Keith Holyoak and 

Paul Thagard (1989) and implemented in a model called ACME. In this model, structural 

similarity, semantic similarity, and pragmatic importance determine a set of constraints to 

be simultaneously satisfied. The model is supplied with a representation of the target and 

one of the base and proceeds to build a localist constraint-satisfaction connectionist 

network where each node corresponds to a possible pairing hypothesis for each element 

of the base and each element of the target. So, for example, if the base is train and the 

target is car, then all elements of trains will be mapped to all elements of cars. There will 

therefore be hypothesis nodes created not only for “locomotive motor” but also for 

“locomotive ! license plate,” “locomotive ! seat-belt buckle,” etc. The excitatory and 

inhibitory links between these nodes implement the structural constraints. In this way, 

contradictory hypothesis nodes compete and do not become simultaneously active, while 

consistent ones mutually support each other. The network gradually reaches an 

equilibrium state and the best set of consistent mapping hypotheses (e.g., “locomotive” ! 

“motor”, “rails” ! “road”, etc.) wins. The relaxation of the network provides a parallel 
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evaluation of all possible mappings and finds the best one, which is represented by the 

set of most active hypothesis nodes. ARCS is a model of retrieval that is coupled with 

ACME and operates in a similar fashion. However, while mapping is dominated by 

structural similarity, retrieval is dominated by semantic similarity.  

 

STAR  

STAR-1 was the first distributed connectionist model of analogy-making (Halford, et al, 

1994). It is based on the tensor product connectionist models developed by Smolensky. A 

proposition like MOTHER-OF (CAT, KITTEN) is represented by the tensor product of the 

three vectors corresponding to MOTHER-OF, CAT, and KITTEN: MOTHER-

OF"CAT"KITTEN. The tensor product in this case is a three-dimensional array of 

numbers where the number in each cell is the multiplication of the three corresponding 

coordinates. This representation allows any of the arguments or the relational symbol to be 

extracted by a generalized dot-product operation: MOTHER-OF " CAT � MOTHER -OF 

" CAT " KITTEN = KITTEN. The LTM of the system is represented by a tensor that is the 

sum of all tensor products representing the individual statements (the main restriction 

being that the propositions are simple and have the same number of arguments). Using 

this type of representation the model STAR-1 solves proportional analogies like 

CAT:KITTEN::MARE:?.  

 

STAR-2 (Wilson, et al., 2001) maps complex analogies by sequentially focusing on various 

parts of the domains (simple propositions with no more than 4 dimensions) and finding 

the best map for the arguments of these propositions by parallel processing in the 

constraint satisfaction network (similarly to ACME). Since the number of units required for 

a tensor-product representation increases exponentially with the number of arguments of a 

predicate, this implies processing constraints in the model. The authors of the model claim 

that humans are subject to similar processing constraints, specifically, they can, in general, 

handle a maximum of four dimensions of a situation concurrently. The primary interest of 

the modelers is in exploring and explaining capacity limitations of human beings and 

achieving a better understanding of the development of analogy-making capabilities in 
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children.  

 

LISA  

John Hummel and Keith Holyoak (1997) proposed an alternative computational model of 

analogy-making using distributed representations of structure relying on dynamic 

binding. The idea is to introduce an explicit time axis so that patterns of activation can 

oscillate over time (thus the timing of activation becomes an additional parameter 

independent of the level of activation). In this way patterns of activation oscillating in 

synchrony are considered to be bound together while those oscillating out of synchrony 

are not. For example, “John hired Mary” requires synchronous oscillation of the patterns 

for “John” and “Employer” alternating it with synchronous oscillation of the patterns for 

“Mary” and “Employee”. Alternating the activation of the two pairs periodically in time 

makes it possible to represent the whole statement. However, if the statement is too 

complex there will be too many pairs that need to fire in synchrony. Based on research on 

single cell recordings, Hummel and Holyoak believe that the number of such different 

pairs of synchronously firing concepts cannot exceed six. Representations in LISA’s 

Working Memory are distributed over the network of semantic primitives, but are localist 

in Long Term Memory – there are separate units representing the episode, the 

propositions, their  

subparts, predicates, arguments, and bindings. Retrieval is performed by spreading 

activation while mapping is performed by learning new connections between the most 

active nodes. LISA successfully integrates retrieval of a base with the mapping of the base 

and target, even though retrieval and mapping are still performed sequentially (mapping 

starts only after one episode is retrieved).  

 

Hybrid Models  

Two groups of researchers independently produced similar models of analogy-making 

based on the idea that high-level cognition emerges as a result of the continual interaction 

of relatively simple, low-level processing units, capable of doing only local computations. 

These models are a combination of both the symbolic and connectionist approaches. 
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Semantic knowledge is incorporated in order to compute the similarity between elements 

of both domains in a context-sensitive way.  

 

COPYCAT, TABLETOP, etc.  

The family of COPYCAT and TABLETOP architectures (Mitchell, 1993; Hofstadter, 1995; 

French, 1995) was explicitly designed to integrate top-down semantic information with 

bottom-up emergent processing. COPYCAT solves letter-string analogies of the form: 

ABC:ABD::KLM:? and gives probabilistically possible answers like KLN, KLD, etc. The 

architecture of COPYCAT involves a working memory, a semantic network (simulating 

long-term memory) defining the concepts used in the system and their relationships, and 

the Coderack – the procedural memory of the system – a store for small, nondeterministic 

computational agents (“codelets”) working on the structures in the working memory and 

continually interacting with the semantic network. Codelets can build new structures or 

destroy old structures in working memory. The system gradually settles towards a set of 

consistent set of structures that will determine the mapping between the base and the 

target.  

The most important feature of these models of analogy-making is their ability to build up 

their own representations of the problem, in contrast with most other models which 

receive the representations of the base and target as input. Thus these models abandon 

traditional sequential processing and allow representation-building and mapping to run in 

parallel and continually influence each other. In this way, the partial mapping can have an 

impact on further representation-building, thus allowing the gradual construction by the 

program of context-sensitive representations. In this way, the mapping may force us to see 

a situation from an unusual perspective in terms of another situation, this being crucial to 

creative analogy-making.  

 

AMBR  

AMBR (Kokinov, 1994) solves problems by analogy, e.g. “how can you heat some water 

in a wooden vessel being in the forest?”. The solution, heating a knife in the fire and 

immersing it into the water, is found by analogy with boiling water in a glass using an 
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immersion heater.  

The AMBR model is based on DUAL, a general cognitive architecture. The LTM of DUAL 

consist of many micro-agents each of which represents a small piece of knowledge. Thus 

concepts, instances and episodes are represented by (possibly overlapping) coalitions of 

micro- agents. Each micro-agent is hybrid – its symbolic part encodes the declarative 

and/or procedural knowledge it is representing, while its connectionist part computes the 

agent’s activation level, which represents the relevance of this knowledge to the current 

context. 

The symbolic processors run at speed proportional to their computed relevance thus 

making the behavior of the system highly context-sensitive. The AMBR model implements 

the interactive parallel work of recollection, mapping and transfer which emerge from the 

collective behavior of the agents and whose work produces the analogy. Recollection in 

AMBR-2 (Kokinov & Petrov, 2001) is reconstruction of the base episode in WM by 

activating relevant aspects of event information, of general knowledge, and of other 

episodes and forming a coherent representation, which will correspond to the target 

problem. The model predicts illusory memories, including insertions from general 

knowledge and blending with other episodes as well as context and priming effects. A 

number of these predictions have been experimentally confirmed.  

 

The field of computer-modeling of analogy-making has moved from the early models 

which were intended mainly as existence proofs to demonstrate that computers could, in 

fact, be programmed to do analogy-making to complex models which make nontrivial 

predictions of human behavior. Researchers have come to appreciate the need for 

structural mapping of the source and target domains, for integration of and interaction 

between representation-building, retrieval, mapping and learning, and for building 

systems that can potentially scale up to the real world. Computational models of analogy-

making have now been applied to a large number of cognitive domains (cf. Gentner, 

Holyoak, Kokinov, 2001). However, most of these models are severely constrained by the 

coverage, extensibility, and plausibility rather than sheer numeric possibility of expert and 

general knowledge they encode. In our approach, we show how we can easily integrate 
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structure-mapping into commonsense framework without being constrained severely by 

aforementioned limitations. 
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8 Discussions and Future Directions 
 

i-Seek provides an exciting platform for expert advisory systems. Our effort heavily 

emphasizes the importance of providing means for elicitation and explanation in a mixed-

initiative dialogue. Our research has shown that this framework combined with 

commonsense knowledge is very fruitful for the user in terms of providing expert advice to 

the user, making user learn by examples, and enhane the overall usability of the system. 

Nevertheless, it turns out that mapping from novice knowledge to expert knowledge and 

vice versa is not trivial. Firstly, natural language components are not very robust and 

accurate, which adds to some noise in the system behavior. As the natural language 

processing techniques advance, we would be able to provide more natural and 

unconstrained means of communication. Also, there are subtle issues related to optimality 

of common sense knowledge required to ascertain sufficiency for certain goal and how 

this can be characterized dynamically.  Commonsense knowledge as it stands as of now 

has wide coverage, but at the same time makes way for very noisy and potentially 

contradictory knowledge. We believe that as this knowledge becomes more sanitized, the 

system would benefit hugely in making proper analogies. Our domain knowledge 

coverage is very sparse and as the project matures further, this knowledge would get 

richer and richer. In future, we plan to build knowledge acquisition tools, that any domain 

expert can use to input domain-specific knowledge. Besides, it would be interesting to see 

how this kind of interaction leads to social role building. As part of future activity, we aim 

to gather more domain-related common sense knowledge.  
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