Using Common Sense Reasoning to
Enable the Semantic Web
	Alexander Faaborg, Sakda Chaiworawitkul, Henry Lieberman,
MIT Media Lab

20 Ames Street, Building E15

Cambridge, MA 02139

faaborg@media.mit.edu, chsakda@mit.edu, lieber@media.mit.edu

ABSTRACT

Current efforts to build the Semantic Web [1] have been based on creating machine readable metadata, using XML tags and RDF triples to formally represent information. It is generally assumed that the only way to create an intelligent Web agent is to build a new Web, a Web specifically for machines that uses a unified logical language. We have approached solving this disparity between humans and machines from the opposite direction, by enabling machines to understand and reason on natural language statements, and giving them knowledge of the world we live in. To demonstrate this approach we have programmed an Explorer Bar for Microsoft’s Internet Explorer Web Browser that uses Common Sense Reasoning to display contextually relevant tasks based on what the user is viewing, and allow users to find and directly query Web Services.
Author Keywords

Semantic Web, Common Sense Reasoning, Task Based User Interfaces.

ACM Classification Keywords

H.5.2. User Interfaces: Interaction Styles
H.3.3. Information Search and Retrieval
H.3.5. Online Information Services: Web-based Services
INTRODUCTION

There are two large problems facing the creation of the Semantic Web: (1) humans are used to communicating in natural, not formal languages; and, (2) for a Semantic Web agent to be useful, it must know a great deal about the world its user lives in.

Recent efforts of the W3C to create standards for the Semantic Web [1] have focused on defining machine readable languages: using Resource Description Framework Schema (RDFS) to define vocabularies for RDF triples [2] which are serialized in eXtensible Markup Language (XML). The next step towards creating the Semantic Web will be getting users to adopt these standards and begin to formally define their information and services. Given that people never fill out the metadata in their Word documents or edit their mp3’s ID3 tags, assuming that average users will correctly build the logical triples needed for the Semantic Web using off the shelf software [3] seems to be a very optimistic theory.

Beyond a reliance on logical metadata, a second problem facing the creation of the Semantic Web is that to intelligently complete tasks for its user, a software agent must have a vast knowledge about the world we live in. For instance, even if a veterinarian’s Web site expresses the concept of veterinarian using the correct URI in an RDF triple, a software agent still needs to know that a veterinarian can help if the user says “my dog is sick.”

We believe that both of these problems can be addressed by augmenting formally defined semantic metadata with a large common sense knowledge repository. To demonstrate this, we have developed an Explorer Bar for Microsoft’s Internet Explorer that uses Open Mind, a knowledge base of 600,000 common sense facts [4,5], and OMCSNet [6], a semantic network of 280,000 concepts and relationships. This common sense knowledge is used to process requests given to it by the user, and to understand the context of the Web page the user is viewing.
GIVING SOFTWARE COMMON SENSE KNOWLEDGE

The Open Mind common sense knowledge base consists of natural language statements entered over the last three years by volunteers on the Web. While it does not contain a complete set of all the common sense knowledge found in the world, its knowledge base is sufficiently large enough to be useful in real world applications. OMCSNet is a semantic network of concepts built using the statements in Open Mind. OMCSNet is similar to WordNet [7] in that it is a large semantic network of concepts, however OMCSNet contains everyday knowledge about the world, while WordNet follows a more formal and taxonomic structure. For instance, WordNet would identify a dog as a type of canine, which is a type of carnivore, which is a kind of placental mammal. OMCSNet identifies a dog as a type of pet [6].
A user Interface for the Near Term Semantic Web
While it is rarely discussed, the generally accepted user interface for the Semantic Web is some form of software agent that the user interacts with using natural language. Our prototype agent is a hybrid between this and a common Web browser.
[image: image1.png]3 Microsoft Corporation - Microsoft Internet Explorer
Fle Edt Vew

O -0 HR®

Favorites Tools tielp

)| raortes @reda &) (2 L2

B

[Services]

mirosoft.com

e (@

Search Web Services x

Microsoft.com Home

Sesrch Microsoft.com for

MSN Home | Subscribe | Manage Your Profile

Product Families
Windows

office

Mobile Devices
Business Solutions
Servers
Developer Tools
Games and Xbox.
MSN Services

All Products.

Great gift ideas
for gamers

Grab hot games for Windows—
like Halo, Flight Simulator, and Age
of Mytholagy—plus Xbox games. &

home & entertainment

Resources
Support
Downloads
Windows Update
Office Update
Learning Tools
Communities
Security

View Stock Quote

Tios for secure, smart online shopsing
Check out thess famy-frendly box aames
* Halo invades the 5C - douniosd the fras tral

=

technical resources
g * Gt best oractices for security patch management
E Gnline support for IT profsssionsls

Office 2003 smart document softvare development kit (SDK)

Information For
Home Users

IT Professionals.
(Techet)

Developers (MSDN)
g

S~ business agility

+ Untanals the mess on vour desk: Go virsless
* Tour PousrPaint 2003 Create mors persuasive oresentations
= + Windous X5 houto aricles for small buzinesses

@ Internet

Figure 1. The Web Services Explorer Bar
The Web Services Explorer Bar contains two areas Search Web Services and Tasks. The Search Web Services area allows users to query SOAP based Web Services using natural language. The Tasks area displays contextually relevant tasks based on what Web page the user is viewing.
Using Common Sense Reasoning to Detect Contextually Relevant Tasks

In Figure 1 we see that the user has browsed to http://www.microsoft.com and the agent has displayed the task View Stock Information. Using semantic metadata, this would be achieved by someone at Microsoft encoding into their HTML the RDF triple:
<rdf:Description rdf:about="http://www.microsoft.com/">
<ns1:stockSymbol>MSFT</ns1:stockSymbol>
</rdf:Description>

And the service works because stockSymbol is an agreed upon predicate for describing a company’s stock symbol.

Our solution is rather different. First, someone logs onto OpenMind [4,5] and enters the common sense fact “Microsoft is a company in Seattle” expressed in natural language. Next, an automated process to create OMCSNet [6] performs natural language processing on this statement and creates the triples
(ISA "microsoft" "company")
(LocationOf "microsoft" "seattle")

These triples and thousands others from OMCSNet are loaded into a hash table in the agent’s memory, and are queried by a set of tasks every time the user loads a new Web page. In this case the agent displayed the View Stock Information task because of the relationship Microsoft and company. It also would have displayed the task if it had detected the object corporation. The second triple might result in a travel based task. Let’s consider another example:
[image: image2.png]3|

Qeack - [¥) &) @ | 9|5 ravores

5 | €] http:fwww.w3.org/People Berners-Lee,

Search Web Services x

5]

Short £
Before
Addres:
Talks,

Tile: timbemerséee

Why tasks were activated:

A graduate of
Founders chai

Intelligence (C¢
directs the Wor
organizations w

New Contact

With a backg

Figure 2. The agent concludes that Tim Berners-Lee is a person

In Figure 2 the agent has assumed that the user is viewing someone’s personal Web page and displayed the New Contact task because of the relationship between Tim and person. It also would have displayed this task if it had detected the objects of human, man or woman.
Both a traditional Semantic Web agent and our prototype rely on the use of triples (RDF triples and OMCSNet triples respectively). However, there are several differences: (1) Users do not have to encode the logic themselves because it is extracted from natural language statements. (2) The tasks will trigger based on a variety of synonymous concepts, making it less brittle than relying on Universal Resource Identifiers. (3) The triples are less specific so they can trigger a variety of tasks. For instance, the triple Microsoft is a company could trigger a task that displays patent filings, or lawsuits, or whatever the user has instructed their agent that they are interested in.
Common Sense Reasoning should not Replace FORmal Semantic Metadata
For some types of tasks, an agent would ideally use both formally defined RDF triples, and triples out of OMCSNet. For instance, a comparison shopping task for a specific type of computer would benefit from having its product numbers, which are best described formally and do not represent common sense knowledge. However, the task could be activated for the user knowing that computers are something that people buy, which represents common sense knowledge. We are not arguing that common sense knowledge bases should replace semantic metadata, but rather should augment it. Ideally an agent’s reasoning should begin with common sense triples, and then start to use formally defined RDF triples later in its inference chain as it completes tasks for its user.
Using Common Sense Reasoning for Web Service Discovery
The Search Web Services area of the Web Services Explorer Bar allows users to enter requests expressed in natural language, and the agent matches these requests against Microsoft’s UDDI repository [8] of Web Services. The agent uses OMCSNet for query expansion when matching the natural language statement the user entered against the natural language descriptions of Web Services in the UDDI repository. For instance, the request “what is the temperature” matches to a service with the description “weather forecast” because of the relationship between temperature and weather has been entered into OpenMind. In fact, OpenMind knows 1104 things about the concept of weather. This search is shown in Figure 3.
[image: image3.png]A about:blank - Microsoft Internet Explorer
He Edt Vew Favortes Ioos teb

O -0 HR®

e) stk

»

S Fovores

Search Web Services sl
s e e
Cutenty found v

Services number. 20

Take me back

Weather Forecast

[GetTemperaturs +

=a—

Getresult

Tasks Explain

@

Figure 3. The user enters a search and directly interacts with a Web Service.
The strategy for Web service discovery can be illustrated as shown in the workflow diagram in Figure 4. On one hand, the information extracted directly from natural language processing (NLP) of the user input query will be input directly to search against UDDI repository. This is a backup fail-soft strategy. On the other hand, the resulting expansions of the query from OMCSNet (in contextual forms) will be used to search against UDDI description.
In this project, the search in UDDI is performed against tModel [9] name and description. Although UDDI provides several means to query for Web services, the major reasons for choosing tModel are: (1) from tModel, one could locate a Web Service Description Language (WSDL) [10] document (2) tModel can be reused for several web services so searching for Web services directly could end up with the same tModel. Thereby, tModel is the best point to search in this case.
The returned matched results from UDDI of each inferencing step in OMCSNet are then rendered on the interface hierarchically. Along with the tModel name, descriptive information about the Web service is provided, such as the tModel description, WSDL document URL, liveliness of the Web service. (see Figure 5.)

[image: image4.emf]Start

User input query

NLP

Raw extracted

lexicons

OMCSNet

expanded query

UDDI Query

WSDL liveliness

test

Discovered web

services listing on

UI

User selection of a

web service

Proxy object

creation

Invocation UI form

rendering

User invocation

Result display

End

Figure 4. Workflow diagram of common sense reasoning for Web service discovery.
[image: image5.png]£ @ thres
wothines etaxonomyofinotines
4 The binry decomposition of “samenbit” com
& it/ /wothingsore
@ o
§ Mo veb sevice fond
B Dexma Underwiting Service.
45 Provesgenec unctions fo ordering underwit
& it //mebcontetdexmacom/DexUderwitSe
 Teccal Wit
(4 Wo ffercumomicedcotent b on i Codeh
) it/ /omcadarctescon/do s srt
& Tecnical witi fr sofwere
4 Use uids nlne ol rfeence manusl o &
B hto://wewtechscribecouk/
@ Technical witing services
4 Techncal wing and et services or techno
it/ /mmscelcom
 form
4 Aeport ormotion Webservice
4 Get Arport Code, GityOrAvpart Nore, County. €
5 hi//wminebeervicscret/aepitasmHGDL
= % Cotecizationof e nd sructrd for

[image: image6.png]Pewm PO

Search result panel
Inference result from OMCS
Alive WS (t-model name)
Dead WS (t-model name)

WS description
WSDL URI

Figure 5. Hierarchical rendering of the resulting Web services based on common-sense reasoning results.
Note that the published content in UDDI repository could contain something else other than Web services. Moreover, due to the nature of the dynamic Web environment where a discovered Web service may or may not be available, the agent must be able to inform users of liveliness of the Web services discovered during this process. We perform testing responses from the discovered web service for this purpose and then render them using different icons on the interface to distinguish their liveliness. The invocable Web services provide links to a WSDL document.
From the WSDL document, we can interrogate the detail of Web services. The result of this process yields a creation of a local object called “proxy” created dynamically using APIs provided in .NET environment. [11] This proxy object contains information about the interfaces of the exposed Web services and how to communicate with them. Note that this proxy does not contain detail of web service implementation. This helps an organization hide their core competency while keeping their services available to public.

The creation of the proxy object provides us a means to dynamically render the user interface for a Web method invocation inside a Web service. (see Figure 3) Firstly, from the proxy object, all the exposed methods are listed into the combo box. Then, the input arguments of the selected method are examined and rendered on the UI dynamically using the .NET reflection mechanism. [11] The invocation of a Web method results in on-the-fly creation of a Simple Object Access Protocol (SOAP) [12] request message to the service binding point as described in the WSDL document. Note that this operational binding point can be different from the WSDL URI. If correctly invoked, the resulting SOAP response message will be returned from the binding point server. We then notify the result on the interface.
Note that the invocation of the Web services can be done only through primitive data types only. The concept of dynamic invocation itself does prevent this, but the user interface rendering does. This barrier is not a problem in using this mechanism in the code since we can query the serialization data schema of the arguments from the WSDL document. However, rendering complex data type such as a customized class object is extremely difficult on a UI level.
DISCUSSIONs ON Common-Sense Reasoning for Web Service Discovery
Through our implementation on Web service discovery, there are several insights on discovery of Web services that should be noted.
(1) Although UDDI provides a standardized means to publish Web services, the content of UDDI are often not Web services. They contain non-invocable resources such as normal HTML web resources, XML documents, Dynamic Library Link (DLL) files, etc. in the tModel that we search against. Moreover, most of the discovered valid WSDL URIs in tModels are not available. This forms a big barrier for our implementation of a Web service discovery agent because providing services through a Web browser typically requires more effort of the user. Unlike the case of a Web document where search result contains a list of easily-understandable text descriptions of matched results, to make sense of a Web service, invocation is required in order to observe the returning result. Therefore, it is very important to distinguish liveliness of the Web services in our application.
(2) Given that we can list the matched results from UDDI, we rely on the user to select a method to be invoked from a list. The major reason for this lies in the current limitation of vendors’ API’s to annotate web methods and their arguments programmatically. If these capabilities were there, we could, instead, match the services down to the level of Web method. Hence we could provide the user with more customized search results. This capability is significant in our case because without a textual description of methods, our agent has no way of intelligently querying methods in the Web service on the user’s behalf.
(3) According to (2), providing customized search result could possibly be achieved by introducing local tagging of web services invoked based on the context of the application and OMCSNet inferencing results. This approach could potentially provide feedback to the agent on how users interacted with the services, ideally allowing the agent to learn from example.
COnclusion

By allowing the user to directly enter information requests in natural language, and allowing the agent to display relevant tasks based on what the user is viewing, we have aimed to create a system capable of rich two-way human computer interaction. And through these interactions we see that a functioning Semantic Web agent requires much more than formally defined RDF triples; it requires vast amounts of general knowledge about the world we live in.
ACKNOWLEDGMENTS

We would like to thank Henry Lieberman and the student’s in his course Common Sense Reasoning for Interactive Applications for their insightful feedback on our prototype agent. Great thanks go to Hugo Liu and Push Singh for their work on OMCSNet and OpenMind.
REFERENCES

1. Semantic Web Activity Statement
http://www.w3.org/2001/sw/Activity.
2. RDF Primer
http://www.w3.org/TR/2003/WD-rdf-primer-20030905/
3. Berners-Lee, T. Hendler, J., Lassila, O. The Semantic Web. Scientific American, May 2001.

4. Mihalcea, R. and Chklovski, T. Open Mind Word Expert: Creating Large Annotated Data Collections with Web Users' Help. Proc. EACL 2003 Workshop.
5. Singh, P., Lin, T., Mueller, E., Lim, G. Perkins, T. and Li Zhu, Wan. Open Mind Common Sense: Knowledge acquisition from the general public. Proc. Ontologies, Databases, and Applications of Semantics for Large Scale Information Systems 2002
6. Liu, H., Singh, P. OMCSNet: A Commonsense Inference Toolkit. MIT Media Lab Society Of Mind Group Technical Report SOM02-01. Retrieved from: http://web.media.mit.edu/~push/OMCSNet.pdf
7. Fellbaum, Christiane. WordNet: An electronic lexical database. MIT Press, Cambridge, MA, USA, 1998.
8. Microsoft Universal Description, Discovery, and Integration (UDDI), http://uddi.microsoft.com/
9. Universal Description, Discovery, and Integration for Web Services, “UDDI Technical White Paper”, http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf
10. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S., Web Services Description Language (WSDL) 1.1, W3C Note 15 March 2001. Retrieved from: http://www.w3.org/TR/wsdl
11. Foggon, D., Maharry, D., Ullman, C., Watson, K., Programming Microsoft .NET XML Web Services, Microsoft Press, 2003.
12. Gudgin, M., Hadley, M., Mendelsohn, N., Canon, J., Neilsen, H., “SOAP Version 1.2 Part1: Messaging Framework”, http://www.w3.org/TR/SOAP/

1

_1132954142.vsd
�

�

Start�

User input query�

NLP�

Raw extracted lexicons�

OMCSNet expanded query�

UDDI Query�

WSDL liveliness test�

Discovered web services listing on UI�

User selection of a web service�

Proxy object creation�

Invocation UI form rendering�

User invocation�

Result display�

End�

